

CS-523 Advanced topics on Privacy Enhancing Technologies

Privacy-Preserving Authorization

Mathilde Raynal
SPRING Lab
mathilde.raynal@epfl.ch

Introduction

Privacy-Preserving Authorization

Course aim: learn **toolbox for privacy engineering**

tool
for building PETS

cryptographic
primitive

Application Layer

Network Layer

Goals

What should you learn today?

- Understand **when to use** privacy-preserving authorization
- Basic understanding of **zero-knowledge proofs**
 - Key properties
 - Schnorr example
- Understand what are **attribute-based credentials**:
 - Trust assumptions & key properties
 - How to choose attributes sets
 - Pointcheval-Sanders example
- Understand basic methods to implement **attribute-based credentials**
 - More in the "Secret Stroll" project!
- Understand **practical issues** when using anonymous authentication

Introduction

I can prove I am Mathilde

Content Mathilde is allowed to see

I can prove I am Mathilde

Content Mathilde is allowed to see

**Identity is not relevant!
Just that I am subscribed to certain content!**

Authentication vs. authorization

Authentication

- Username and password
- Biometrics
- Client certificates
- Challenge response with public key cryptography (ssh)

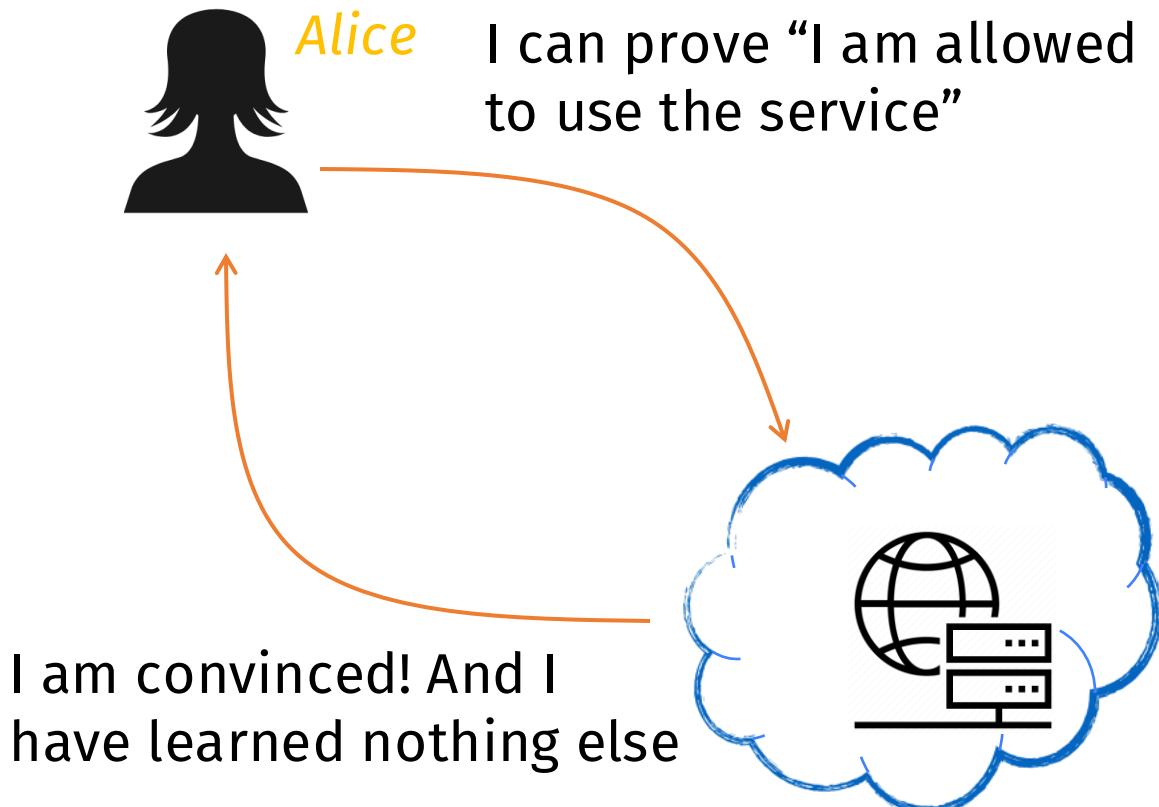
All of these *identify* the user. Is this always necessary?

Authorization

- Check that this user is a real person and not a bot (Cloudflare)
- is an honest editor (Wikipedia)
- paid for this service (video streaming, music, games, etc.)
- is old enough to access this service
- is allowed to vote

None of these require *identification*.
How do we build these?

Privacy-Preserving authorization



- A cryptographic primitive that enables users to prove possession of an attribute
- **Security property:** the proving party cannot lie, and the verifying party cannot be convinced if not true
- **Privacy property:** the verifying party cannot learn anything, other than the veracity of the statement proven (and what one infers from the statement itself)
- Privacy-preserving authorization builds on **zero-knowledge proofs**

Zero-Knowledge Proofs

Zero-knowledge proofs

A prover can use a **zero-knowledge proof** to prove that a **statement** is true, without revealing information beyond the fact that the statement is true.

Example 1 (In voting protocols)

Prover: Voter

Statement: This ciphertext c contains an encryption of 0 or 1.

Without revealing: the vote

Example 2 (PKI)

Prover: pk holder

Statement: They know the private key sk corresponding to this public key pk .

Without revealing: the private key sk

Zero-knowledge proofs: properties

abc

A prover can use a **zero-knowledge proof** to prove that a **statement** is true, without revealing information beyond the fact that the statement is true.

Completeness: If the **statement** is true, an honest prover can convince an honest verifier that the **statement** is true.

Soundness: If the **statement** is false, a cheating prover cannot convince an honest verifier with high probability (i.e., close to 1).

Zero-knowledge: If the **statement** is true, no verifier learns anything other than the fact that the **statement** is true.

Deep Dive: Example 2 (PKI)

Prover: pk holder

Statement: They know the private key sk corresponding to this public key pk .

Without revealing: the private key sk

A *solution*: Schnorr's proof of identification !

Why does it have completeness? Soundness? ZK?

Schnorr's proof of identification

Peggy wants to prove to Victor that she knows the private key x corresponding to the public key $h = g^x$ without revealing x .

Cyclic group: G

Generator: g

Group order: p (prime)

$x \in \mathbb{Z}_p$

Discrete logarithm problem:

Given g, h find x st. $h = g^x$

Peggy

Victor

Schnorr's proof of identification

Peggy wants to prove to Victor that she knows the private key x corresponding to the public key $h = g^x$ without revealing x .

Cyclic group: G

Generator: g

Group order: p (prime)

$x \in \mathbb{Z}_p$

Discrete logarithm problem:
Given g, h find x st. $h = g^x$

Common information:

- Group: (G, g, p)
- Public key: $h = g^x$

Peggy

Victor

Schnorr's proof of identification (no c)

Peggy wants to prove to Victor that she knows the private key x corresponding to the public key $h = g^x$ without revealing x .

Cyclic group: G
Generator: g
Group order: p (prime)
 $x \in \mathbb{Z}_p$

Discrete logarithm problem:
Given g, h find x st. $h = g^x$

Peggy

Pick $r \in_R \mathbb{Z}_p$

$$R = g^r$$

$$s = r + x \pmod{p}$$

Victor

$$Rh =? g^s$$

Common information:

- Group: (G, g, p)
- Public key: $h = g^x$

No: $R = g^s / h$
always verifies

Completeness: If Peggy is honest, she can convince Victor (honest verifier) that the statement is true.

Soundness: If Peggy is not honest, she cannot convince Victor (honest verifier) with high probability.

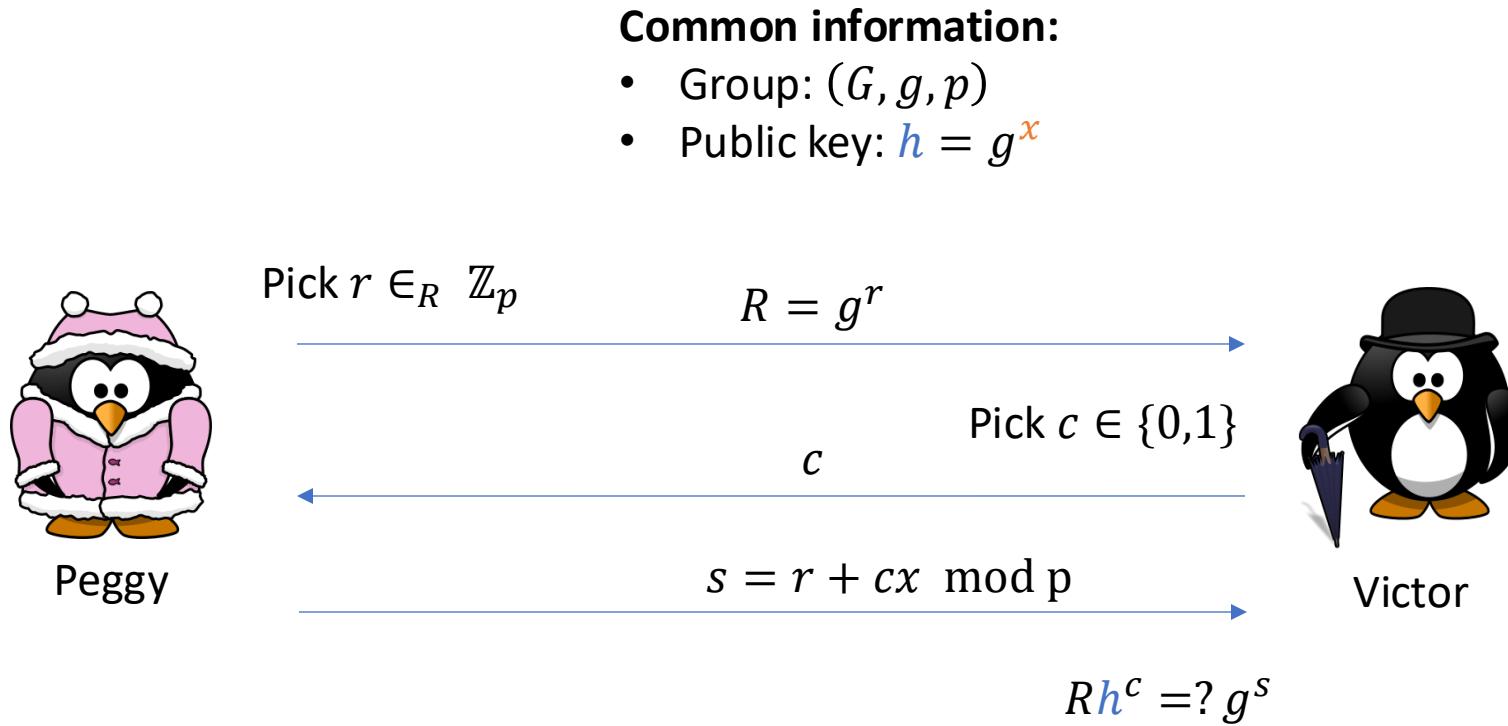
Zero-knowledge: Victor cannot learn anything about x .

Schnorr's proof of identification (1-bit)

Peggy wants to prove to Victor that she knows the private key x corresponding to the public key $h = g^x$ without revealing x .

Cyclic group: G
Generator: g
Group order: p (prime)
 $x \in \mathbb{Z}_p$

Discrete logarithm problem:
Given g, h find x st. $h = g^x$

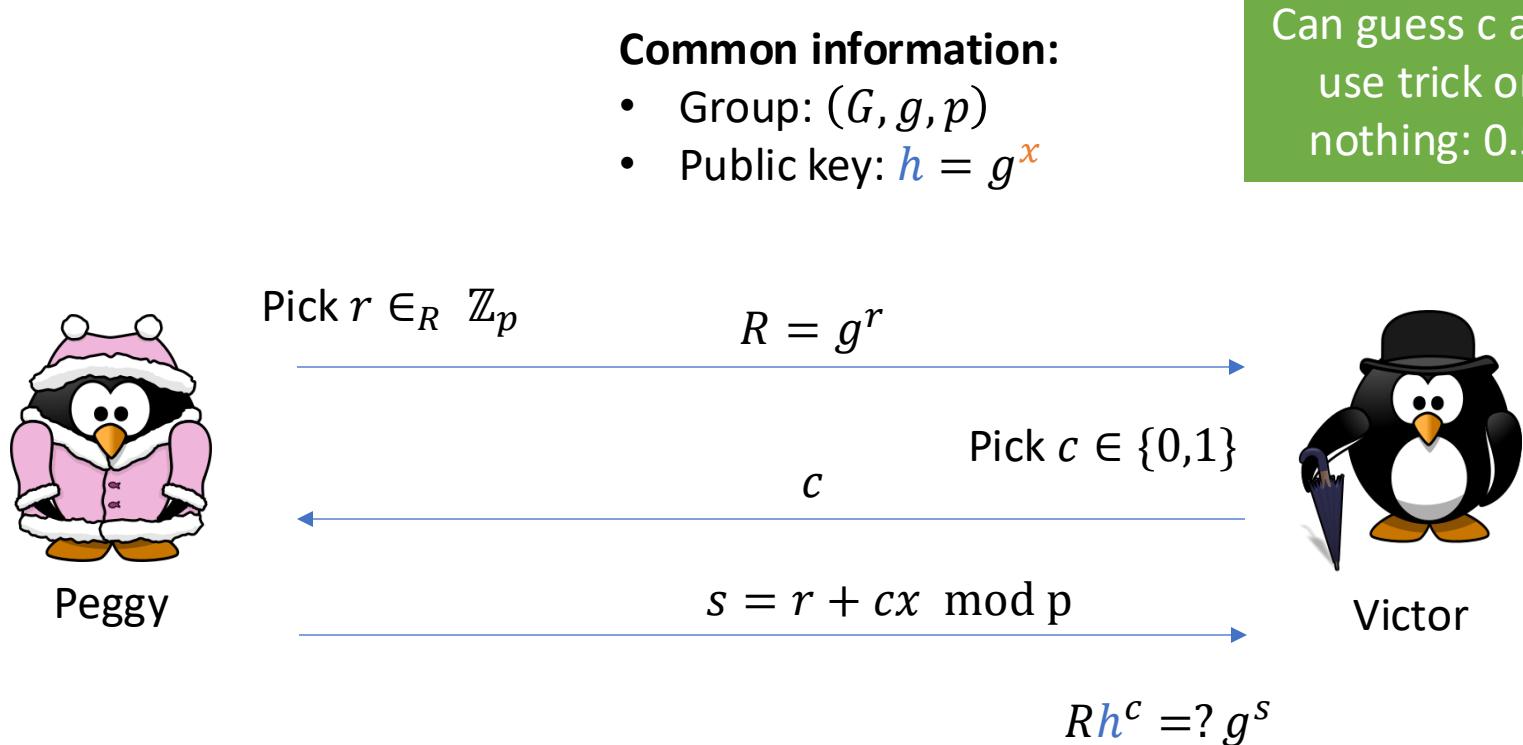


Schnorr's proof of identification (1-bit)

Peggy wants to prove to Victor that she knows the private key x corresponding to the public key $h = g^x$ without revealing x .

Cyclic group: G
Generator: g
Group order: p (prime)
 $x \in \mathbb{Z}_p$

Discrete logarithm problem:
Given g, h find x st. $h = g^x$



Can guess c and use trick or nothing: 0.5

Completeness: If Peggy is honest, she can convince Victor (honest verifier) that the statement is true.

Soundness: If Peggy is not honest, she cannot convince Victor (honest verifier) with high probability.

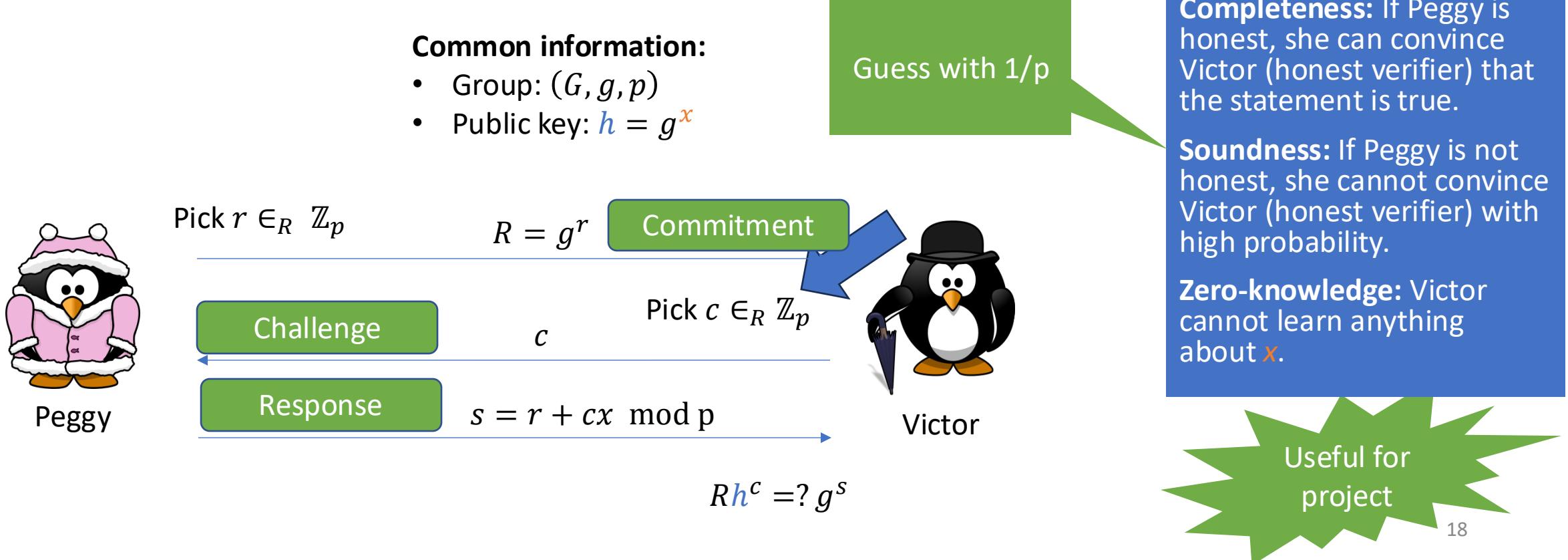
Zero-knowledge: Victor cannot learn anything about x .

Schnorr's proof of identification (n-bits)

Peggy wants to prove to Victor that she knows the private key x corresponding to the public key $h = g^x$ without revealing x .

Cyclic group: G
Generator: g
Group order: p (prime)
 $x \in \mathbb{Z}_p$

Discrete logarithm problem:
Given g, h find x st. $h = g^x$



Schnorr's proof of identification

Peggy wants to prove to Victor that she knows the private key x corresponding to the public key $h = g^x$ without revealing x .

Cyclic group: G

Generator: g

Group order: p (prime)

$x \in \mathbb{Z}_p$

Discrete logarithm problem:
Given g, h find x st. $h = g^x$

Peggy

Short Notation:

$$\text{PK}\{(x): h = g^x\}$$

Proving knowledge of a Pedersen's commitment:

$$\text{PK}\{(x, r): C = g_1^x g_2^r\}$$

Victor

Completeness: If Peggy is honest, she can convince Victor (honest verifier) that the statement is true.

Soundness: If Peggy is not honest, she cannot convince Victor (honest verifier) with high probability.

Zero-knowledge: Victor cannot learn anything about x .

Non-interactive proofs: Fiat--Shamir heuristic

- **Interaction is costly**, requires communication rounds with verifier. Verifier needs to be **online**.

Fiat-Shamir heuristic:

- Turns interactive commitment-challenge-response protocols (called sigma-protocols) into non-interactive protocols
- Replace challenge c with cryptographic hash of:
 - All public values
and
 - All commitments of the first step

Schnorr's proof of identification

Peggy wants to prove to Victor that she knows the private key x corresponding to the public key $h = g^x$ without revealing x .

Cyclic group: G
Generator: g
Group order: p (prime)
 $x \in \mathbb{Z}_p$

Discrete logarithm problem:
Given g, h find x st. $h = g^x$

Common information:

- Group: (G, g, p)
- Public key: $h = g^x$

Pick $r \in_R \mathbb{Z}_p$
 $R = g^r$

$$c = H(g \parallel h \parallel R)$$

Peggy

Victor

$$R, c, s = r + cx \bmod p$$

$$R \textcolor{blue}{h}^c =? g^s$$

Schnorr's proof of identification

Peggy wants to prove to Victor that she knows the private key x corresponding to the public key $h = g^x$ without revealing x .

Cyclic group: G

Generator: g

Group order: p (prime)

$x \in \mathbb{Z}_p$

Discrete logarithm problem:
Given g, h find x st. $h = g^x$

Common information:

- Group: (G, g, p)
- Public key: $h = g^x$

Pick $r \in_R \mathbb{Z}_p$
 $R = g^r$

$$c = H(g \parallel h \parallel R)$$

Peggy

$$R, c, s = r + cx \bmod p$$

Victor

$$R h^e = ? g^s$$

$$\begin{aligned} R' &= g^s h^{-c} \\ c' &= H(g \parallel h \parallel R') \\ c &=? c' \end{aligned}$$

Schnorr's signature

Peggy with public key h wants to sign m .

Cyclic group: G
Generator: g
Group order: p (prime)
 $x \in \mathbb{Z}_p$

Discrete logarithm problem:
Given g, h find x st. $h = g^x$

Common information:

- Group: (G, g, p)
- Public key: $h = g^x$
- Message m

Pick $r \in_R \mathbb{Z}_p$
 $R = g^r$

$$c = H(g \parallel h \parallel R \parallel m)$$

Peggy

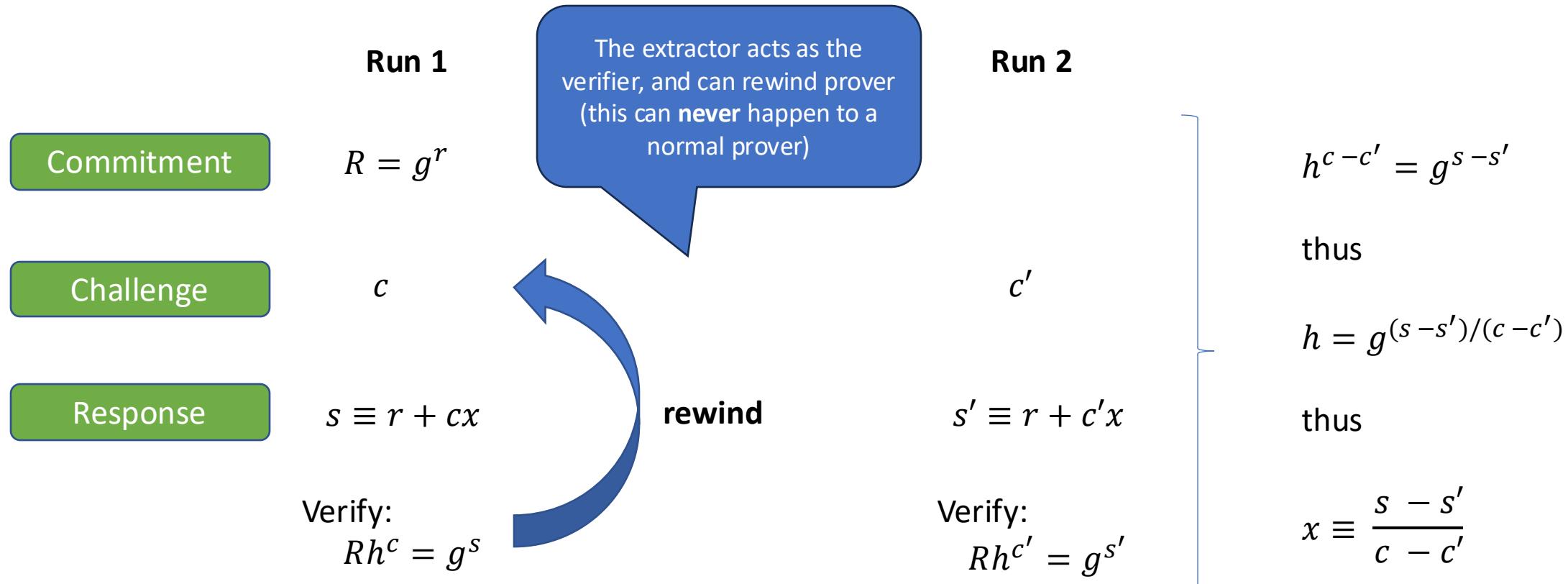
Signature $c, s = r + cx \pmod{p}$

Victor

$$\begin{aligned} R' &= g^s h^{-c} \\ c' &= H(g \parallel h \parallel R' \parallel m) \\ c &=? c' \end{aligned}$$

Proof of Knowledge - Extractor

Proof of knowledge: There exists an extractor that, given a successful prover, can extract the witness (value of which knowledge is being proved).



Zero-knowledge proofs in the wild

Critical building block in many cryptographic and privacy-enhancing technologies.

- Zcash digital currency (but uses a different type of proofs)
- Other types of electronic cash based on tokens
- Electronic voting systems
- Private (smart) metering
- Privacy friendly reputation system

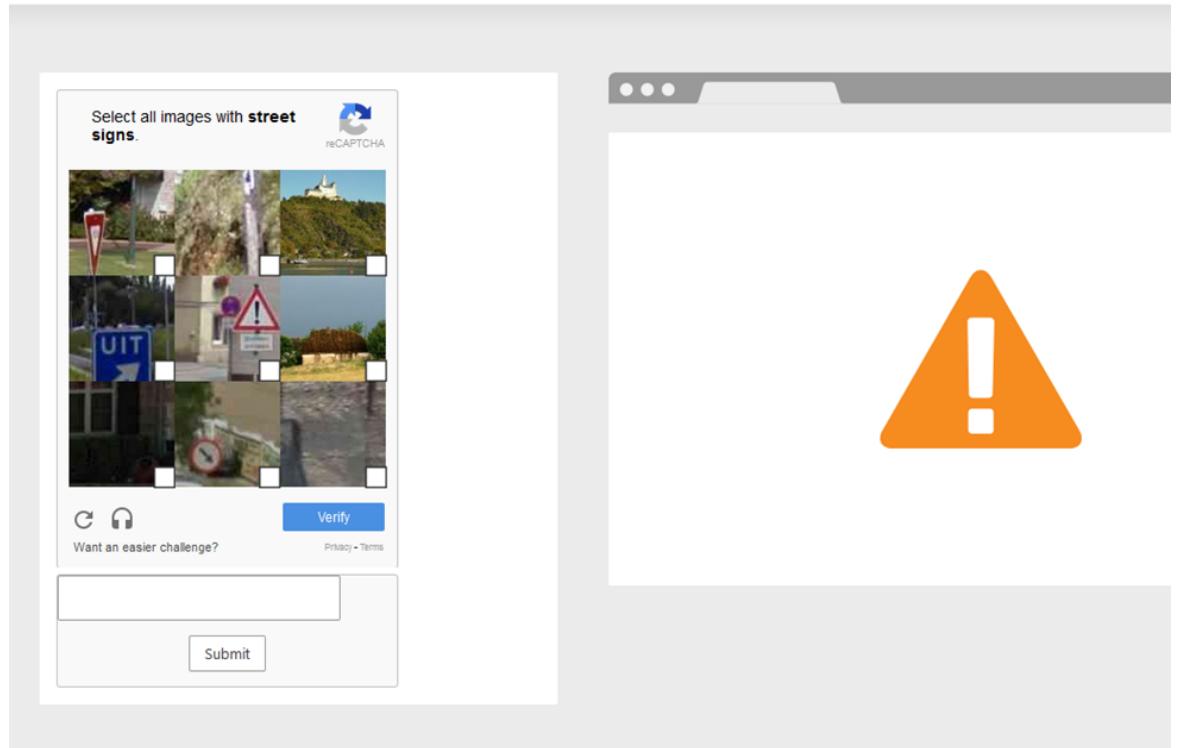
Example: privacy pass

When browsing websites using Tor, users frequently have to solve CAPTCHAs.

Why?

One more step

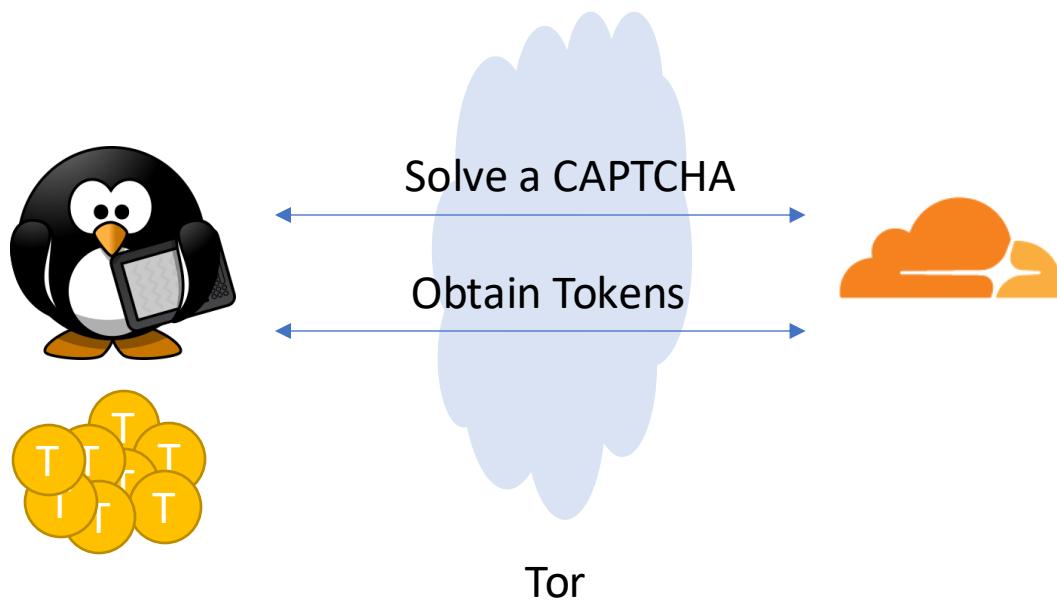
Please complete the security check to access cloudflare.com



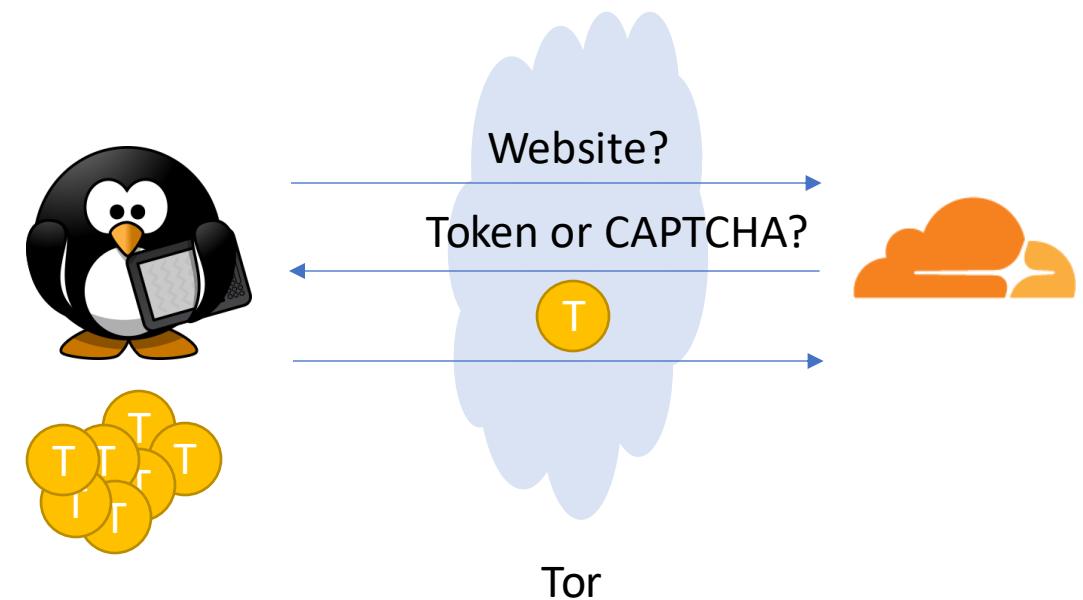
Example: privacy pass

- Goal: automatically allow real users (humans) from bots, implemented by Cloudflare and Tor browser.

Step 1: Obtain tokens



Step 2: Spend tokens instead of solving CAPTCHA



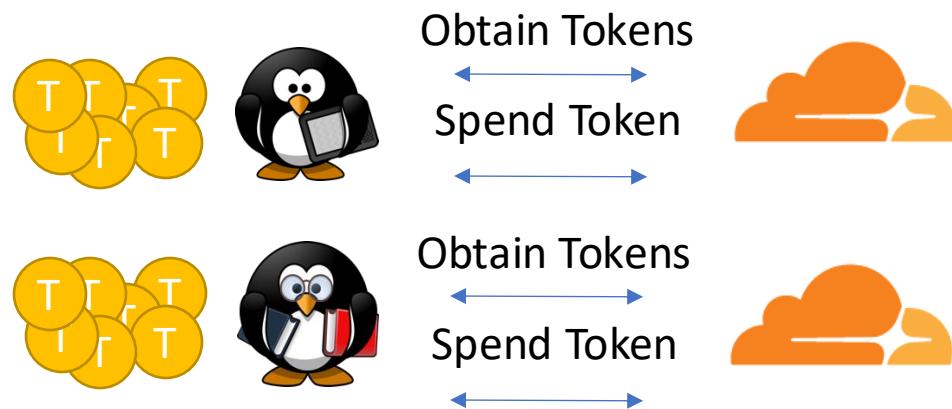
- What do we do ***not*** want?

Cloudflare learning pairs: (“I am human Mathilde”, website I visit)

Property: unlinkability

- Cloudflare (the adversary) should not be able to link tokens by the same user.
- Modelled using an indistinguishability game which captures something stronger: can Cloudflare distinguish between two users?

Phase 1: obtain/spend tokens

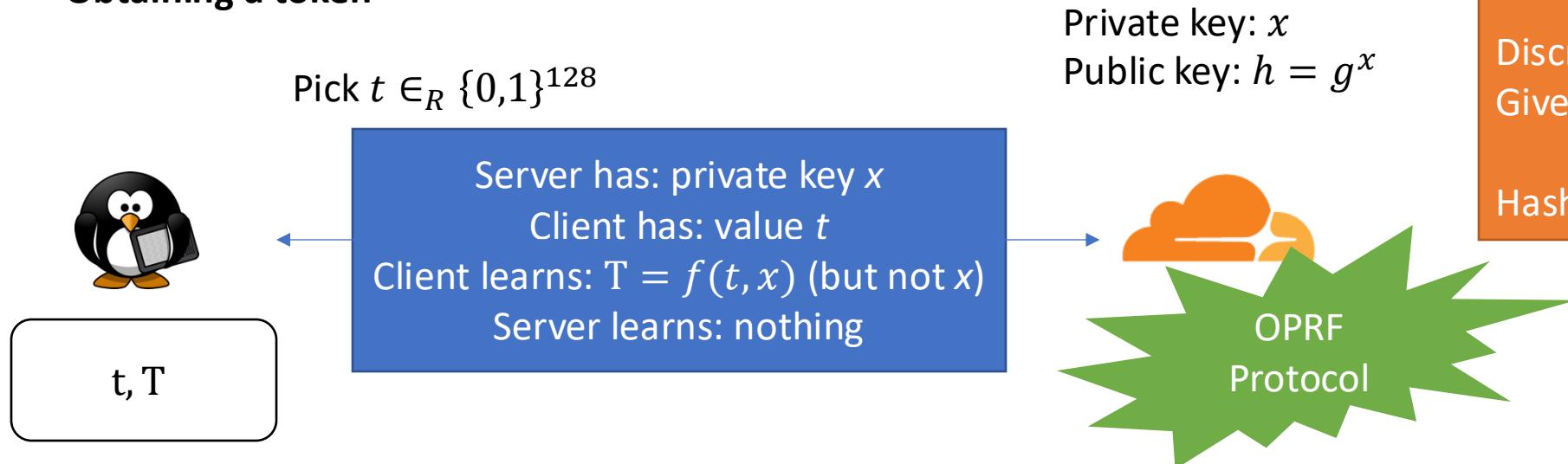


Phase 2: challenge phase

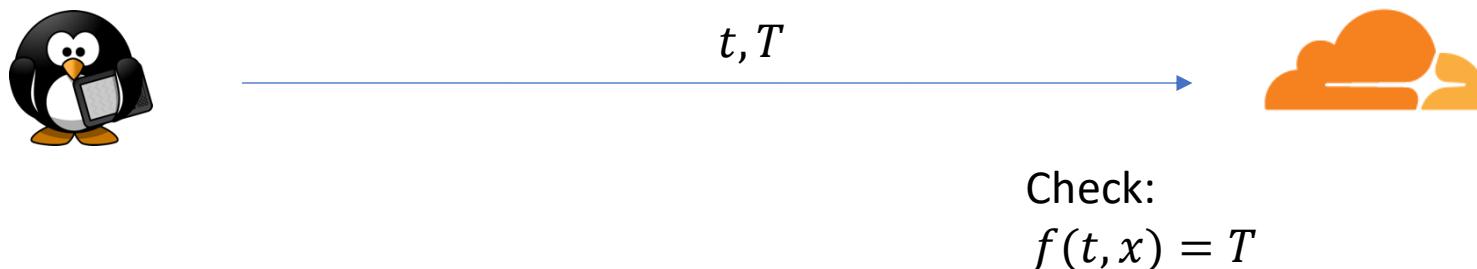
Cyclic group: G Generator: g Group order: p (prime)Discrete logarithm problem:
Given g, h find x st. $h = g^x$ Hash function: $H: \{0,1\}^* \rightarrow G$

Implementing privacy pass

Obtaining a token



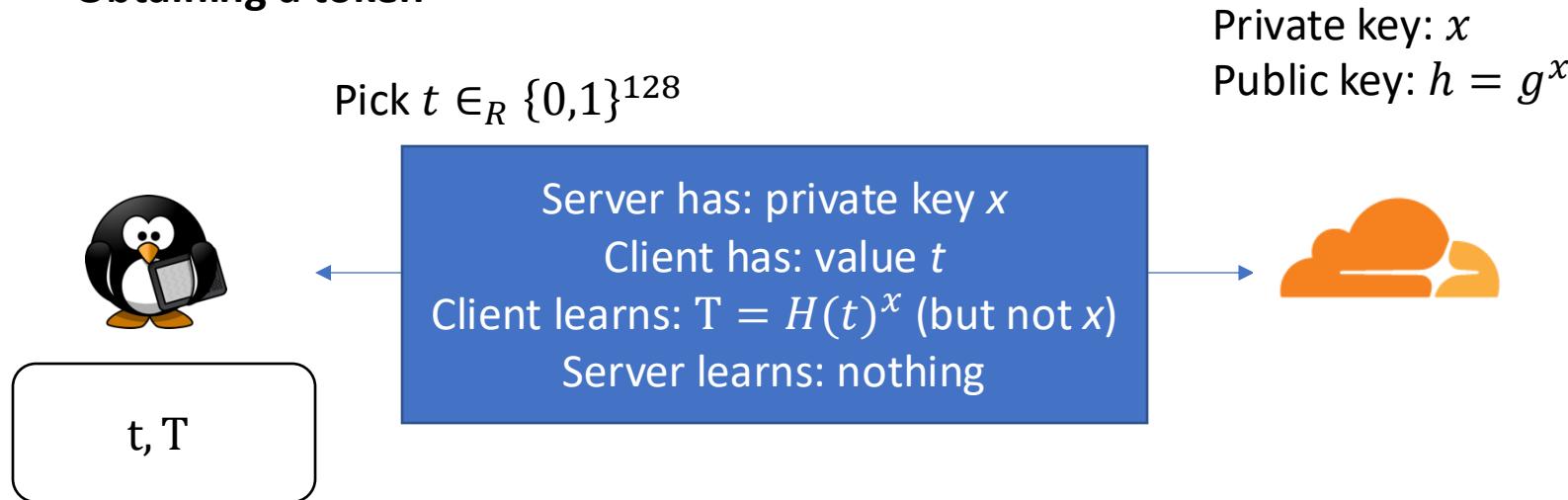
Showing a token



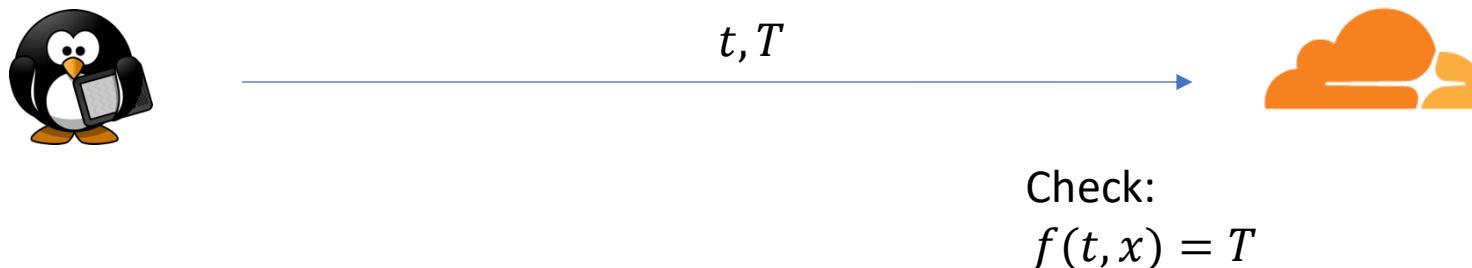
Cyclic group: G Generator: g Group order: p (prime)Discrete logarithm problem:
Given g, h find x st. $h = g^x$ Hash function: $H: \{0,1\}^* \rightarrow G$

Implementing privacy pass

Obtaining a token



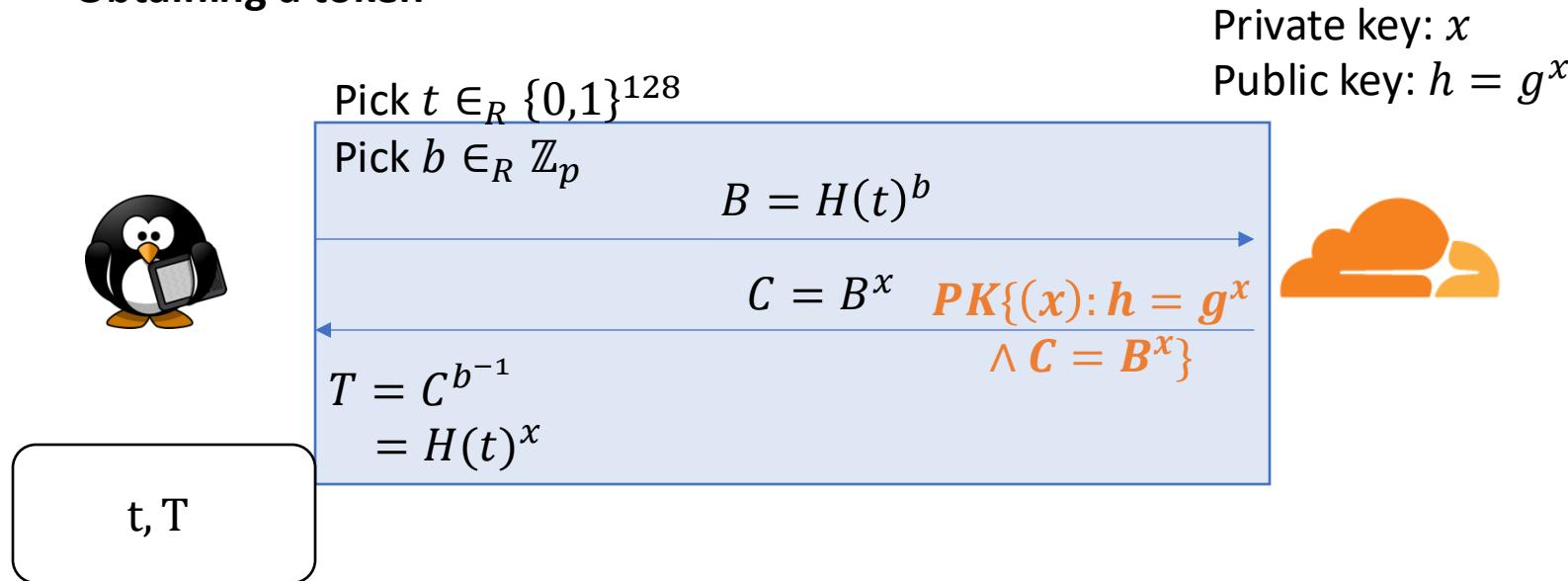
Showing a token



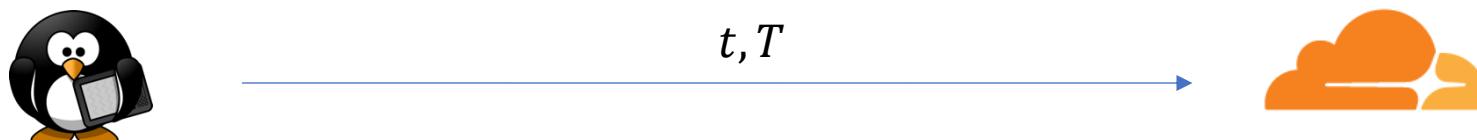
Cyclic group: G Generator: g Group order: p (prime)Discrete logarithm problem:
Given g, h find x st. $h = g^x$ Hash function: $H: \{0,1\}^* \rightarrow G$

Implementing privacy pass

Obtaining a token



Showing a token



- How can **ZKP** help here?

Check:
 $f(t, x) = T$

Attribute-based credentials

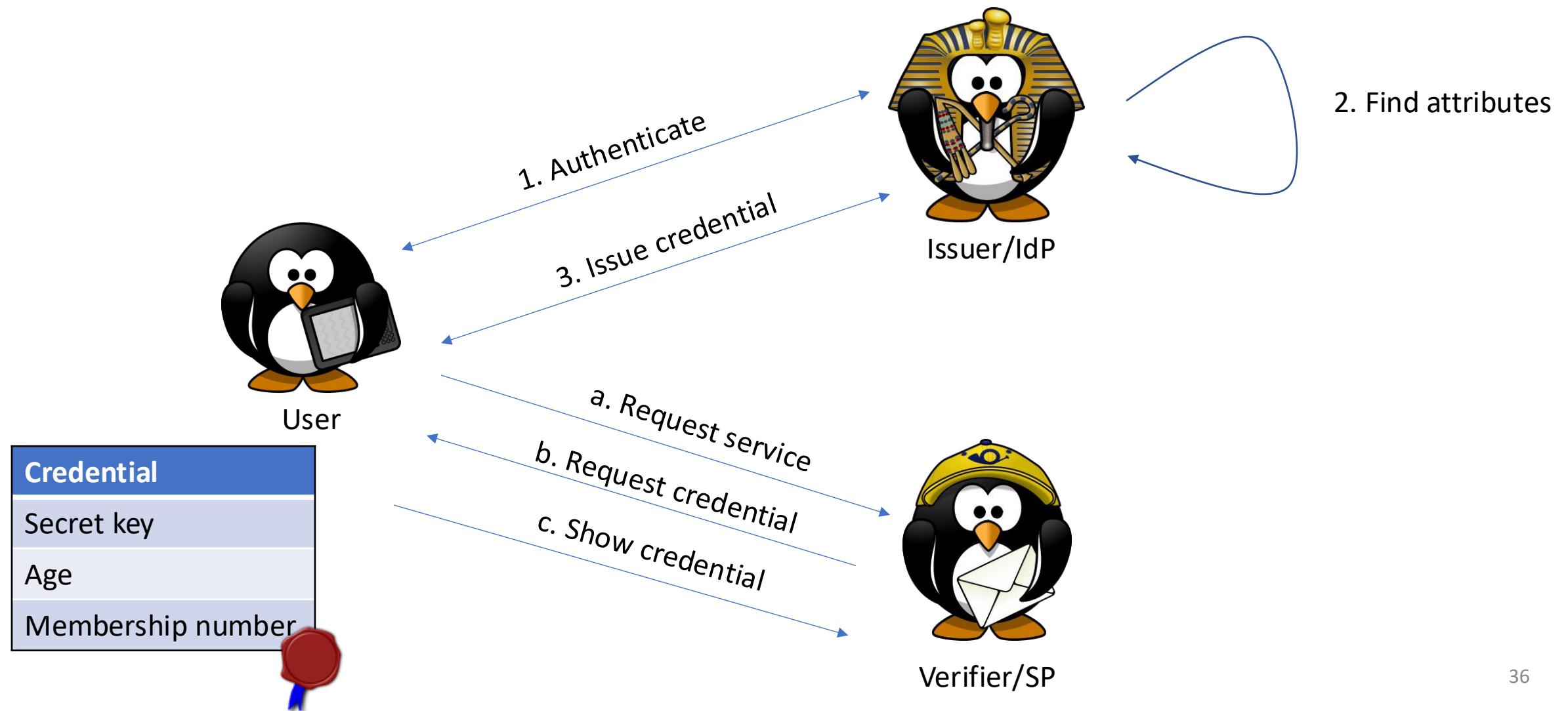
Attribute-based credentials

- Also known as *anonymous credentials*
- As opposed to tokens, can contain other attributes
- Attributes are encoded as numbers, may represent:
 - Membership status (normal user, premium user)
 - Name
 - Age
 - Social security number
 - Random identifiers and secret keys
 - Application specific identifiers
 - ...

Credential
Secret key
Name
Age
Membership number
Membership type

 Signed by
an **issuer**

Obtaining credentials and showing credentials



Attribute-based credentials: properties

Unforgeability: only the issuer should be able to produce valid credentials.

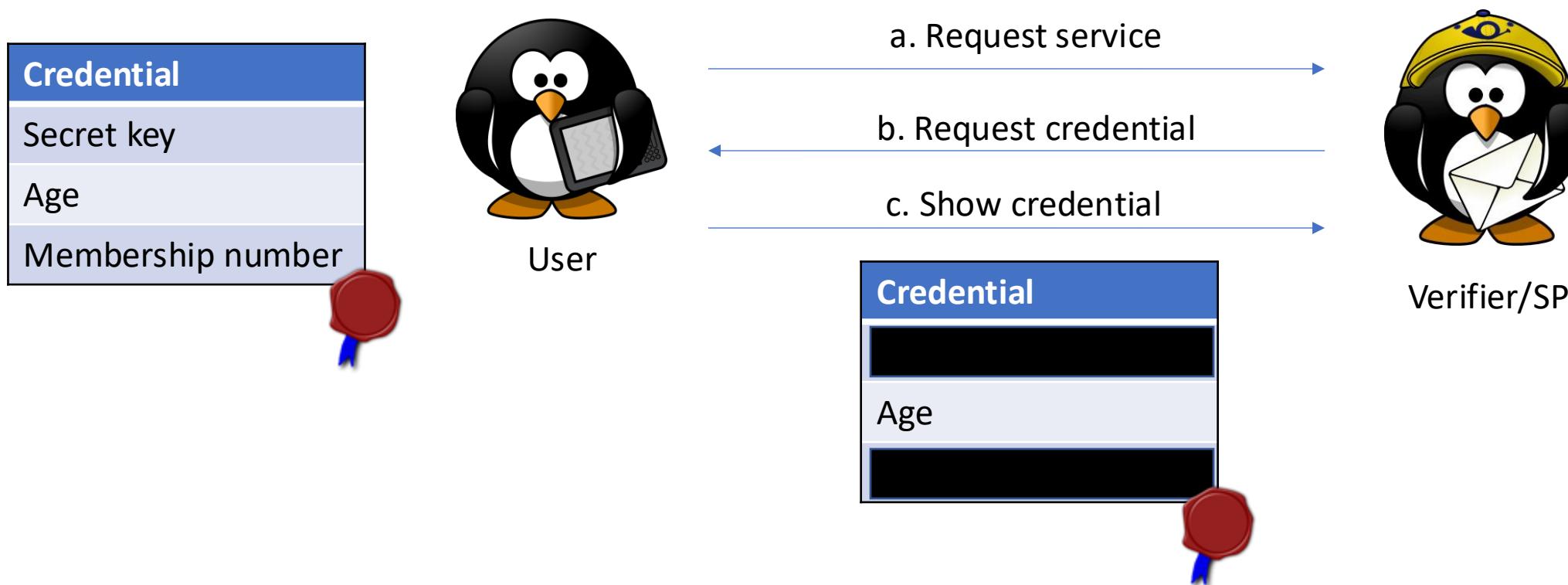
Selective disclosure: the user can hide irrelevant attributes

Issuer unlinkability: the issuer should not be able to recognize a credential that it previously issued

Verifier unlinkability: the verifier should not be able to link two consecutive showings of the same credential

Selective disclosure

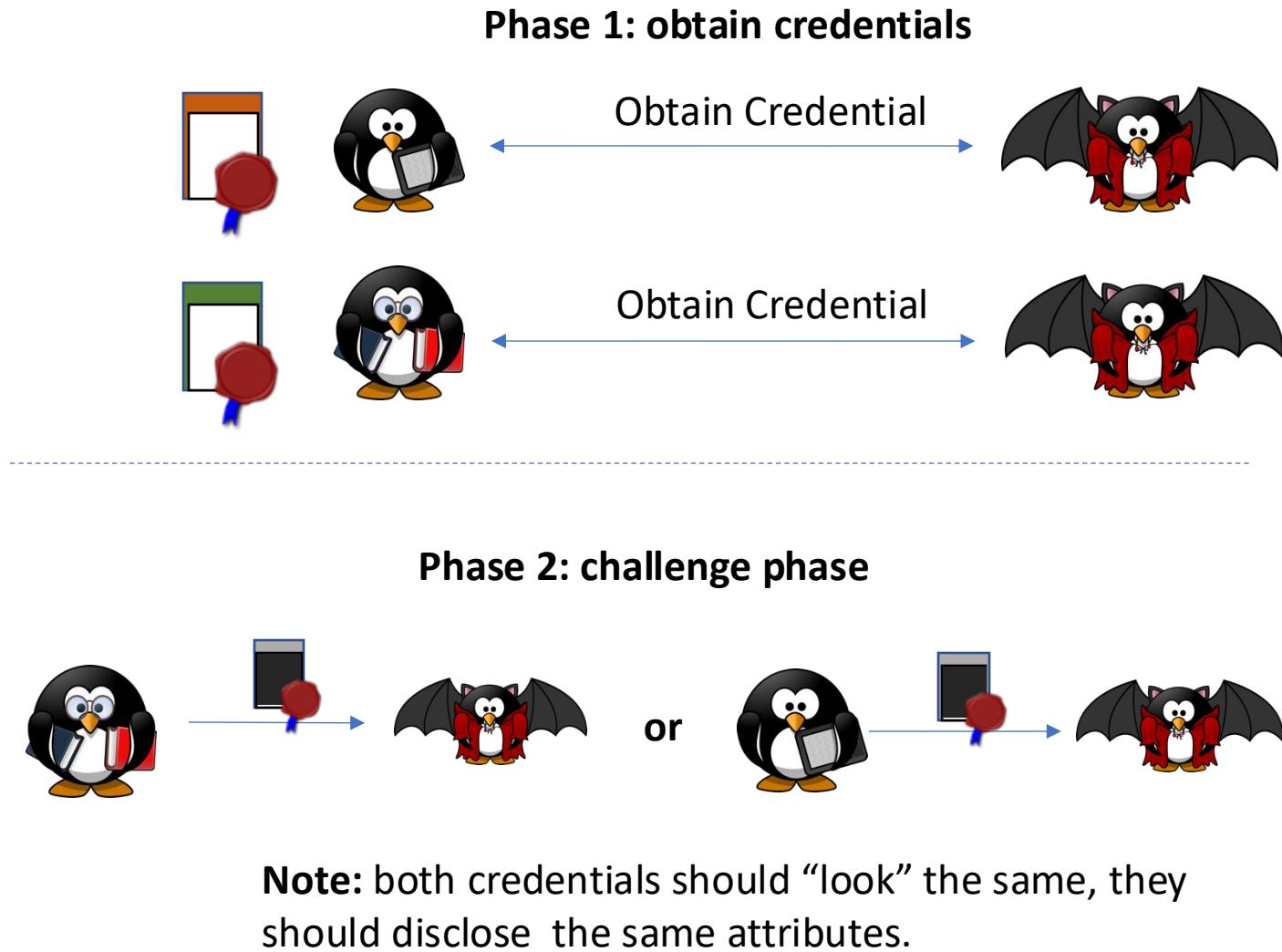
The user can hide irrelevant attributes. But the verifier can still check the validity of the credential.



Construction 1: traditional signatures

Issuer Unlinkability

- The issuer should not be able to recognize a credential that it previously issued
- Modelled using an indistinguishability game.
- Phase 1: obtain credentials
- Phase 2: challenge phase, distinguish users

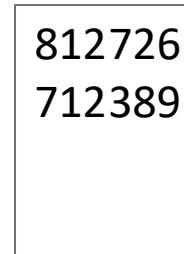


Construction 2: blind signatures

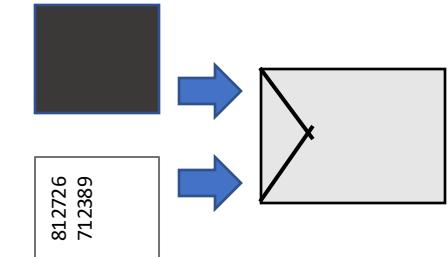
- Blind signature: signer signs a message m without knowing what it signs. Moreover, it cannot later recognize this signature.
- Property: exactly as issuer unlinkability.
- Implemented by: U-Prove by Microsoft (2000), but also Anonymous Credentials Light (2013), and PrivacyPass

A simple physical blind signature scheme

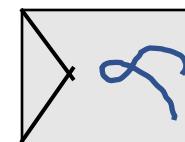
Step 1: write down serial number



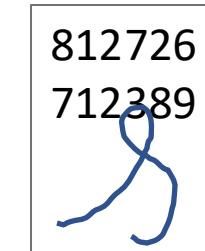
Step 2: place in envelope with carbon paper



Step 3: issuer signs the envelope



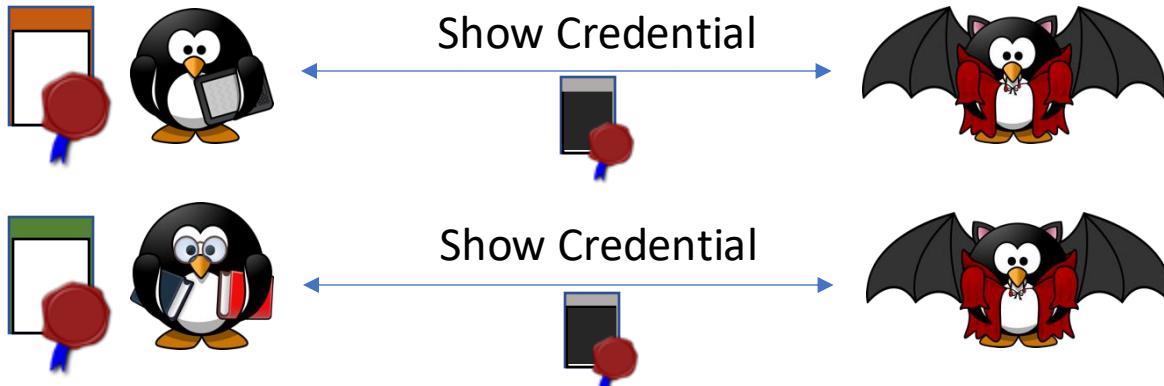
Step 4: user recovers signed statement



Verifier (multi-show) Unlinkability

- The verifier should not be able to recognize a credential that it previously saw
- Modelled using an indistinguishability game.
- Phase 1: see credentials for different users
- Phase 2: challenge phase, distinguish users

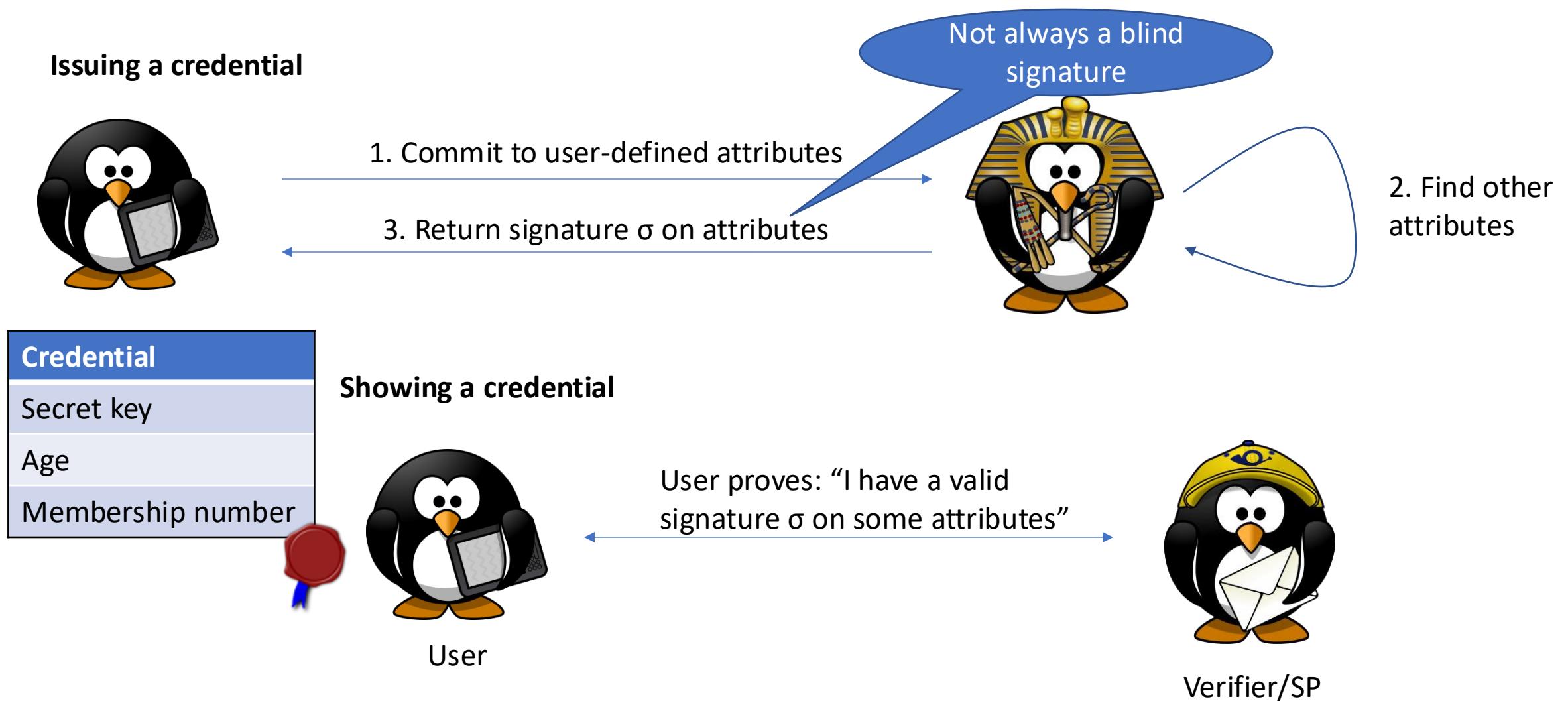
Phase 1: see credentials



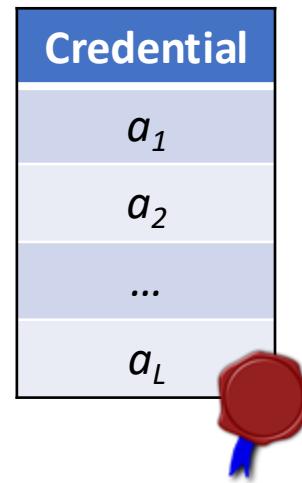
Phase 2: challenge phase

Note: both credentials should “look” the same, they should disclose the same attributes (key and value).

Construction 3: proving having signature



Deep Dive: Pointcheval-Sanders credential



A solution: Pointcheval-Sanders

Why does it have unforgeability? Selective disclosure? I&V unlinkability?

Pointcheval-Sanders credential

The next 3 slides are full of math, AGAIN

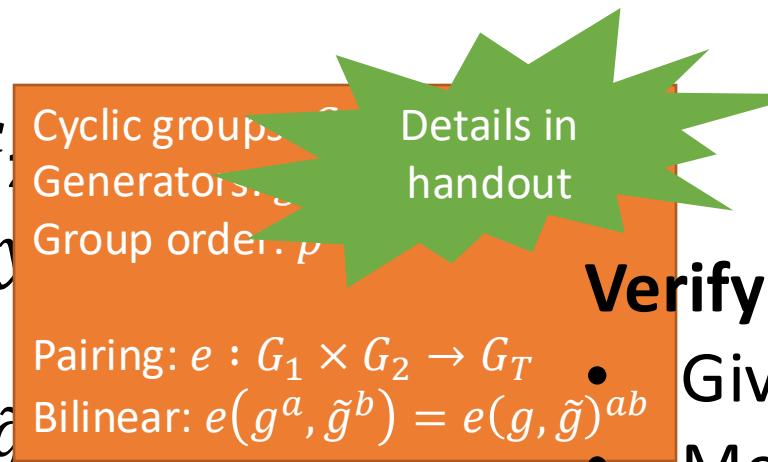
but then we're done for today

Pointcheval-Sanders credential

Pointcheval-Sanders signatures

Key generation

- Pick generator $\tilde{g} \in_R G_1$
- Private key: (x, y_1, \dots, y_L)
- Public key:
 $(\tilde{g}, \tilde{X}, \tilde{Y}_1, \dots, \tilde{Y}_L) = (\tilde{g}, \tilde{g}^x, \tilde{g}^{x+y_1}, \dots, \tilde{g}^{x+y_L})$



Signing tuple (m_1, \dots, m_L)

- Pick $h \in_R G_1^*$ and output
- Signature $\sigma = (h, h^{x+\sum y_i m_i})$

Verifying a signature:

- Given a signature $\sigma = (\sigma_1, \sigma_2)$
- Message: (m_1, \dots, m_L)
- And public key $(\tilde{g}, \tilde{X}, \tilde{Y}_1, \dots, \tilde{Y}_L)$
- Check:
 - $\sigma_1 \neq 1_{G_1}$
 - $e(\sigma_1, \tilde{X} \cdot \prod \tilde{Y}_i^{m_i}) = e(\sigma_2, \tilde{g})$

Attribute sets:
 U : attributes **determined by user**
(hidden from issuer)
 I : attributes **determined by issuer**

Pointcheval-Sanders credential

Issuing a PS credential

- User commits to hidden attributes, pick $t \in_R \mathbb{Z}_p$:

$$C = g^t \prod_{i \in U} Y_i^{a_i}$$

Proof shows that C is correctly formed.
What goes wrong if you omit this?

- And proves that she did so correctly:

$$PK \left\{ (t, (a_i)_{i \in U}) : C = g^t \prod_{i \in U} Y_i^{a_i} \right\}$$

- Issuer verifies the proof, picks $u \in_R \mathbb{Z}_p$ and sets:

$$\sigma' = \left(g^u, \left(XC \prod_{i \in I} Y_i^{a_i} \right)^u \right)$$

- User forms signature $\sigma = (\sigma'_1, \frac{\sigma'_2}{\sigma'_1 t})$

Cyclic groups: G_1, G_2, G_T

Generators: g, \tilde{g}, g_T

Group order: p

Pairing: $e : G_1 \times G_2 \rightarrow G_T$

Bilinear: $e(g^a, \tilde{g}^b) = e(g, \tilde{g})^{ab}$

PS Signatures

Private key:

$$(x, y_1, \dots, y_L) \in_R \mathbb{Z}_p$$

$$X = g^x$$

Public key:

$$(g, Y_i) = (g, g^{y_i}) \in G_1$$

$$(\tilde{g}, \tilde{X}, \tilde{Y}_i) = (\tilde{g}, \tilde{g}^x, \tilde{g}^{y_i}) \in G_2$$

Signature: $\sigma = (\sigma_1, \sigma_2)$ such that

$$\sigma = (h, h^{x+\sum y_i a_i}) \in G_1^2$$

Pointcheval-Sanders credential

Proving possession of a credential

- User has a credential $\sigma = (\sigma_1, \sigma_2)$ on (a_1, \dots, a_L)
- Pick $r, t \in_R \mathbb{Z}_p$ and compute $\sigma' = (\sigma_1^r, (\sigma_2 \sigma_1^t)^r)$
- Send σ' and disclosed attributes $(a_i)_{i \in D}$
- And proves that the signature is valid:

$$PK \left\{ (t, (a_i)_{i \in H}) : \frac{e(\sigma'_2, \tilde{g}) \prod_{i \in D} e(\sigma'_1, \tilde{Y}_j)^{-a_i}}{e(\sigma'_1, \tilde{X})} = e(\sigma'_1, \tilde{g})^t \prod_{i \in H} e(\sigma'_1, \tilde{Y}_i)^{a_i} \right\}$$

- The verifier accepts if proof is valid and $\sigma'_1 \neq 1$

What goes wrong if you omit this?

Cyclic groups: G_1, G_2, G_T

Generators: g, \tilde{g}, g_T

Group order: p

Pairing: $e : G_1 \times G_2 \rightarrow G_T$

Bilinear: $e(g^a, \tilde{g}^b) = e(g, \tilde{g})^{ab}$

PS Signatures

Private key:

$(x, y_1, \dots, y_L) \in_R \mathbb{Z}_p$

$X = g^x$

Public key:

$(g, Y_i) = (g, g^{y_i}) \in G_1$

$(\tilde{g}, \tilde{X}, \tilde{Y}_i) = (\tilde{g}, \tilde{g}^x, \tilde{g}^{y_i}) \in G_2$

Signature: $\sigma = (\sigma_1, \sigma_2)$ such that

$\sigma = (h, h^{x+\sum y_i a_i}) \in G_1^2$

$$e(\sigma'_1, \tilde{g}^t \tilde{X} \cdot \prod \tilde{Y}_i^{a_i}) = e(\sigma'_2, \tilde{g})$$

Pointcheval-Sanders credential

Properties

- **Unforgeability**: yes, from the PS *signatures*
- **Selective disclosure**: yes, use proof of knowledge to prove that the signature is valid without revealing all the attributes
- **Issuer & verifier unlinkability**: yes. Informally, the randomization and the proof of knowledge hide the signature. Therefore, neither the issuer (signer) nor the verifier can recognize it.

ABCs in the wild

- Algebraic MACs (2014): assumes issuer and verifier are same, but has multi-show unlinkability, does not require pairings
- Anonymous Credentials Light (2013): uses the blind-signature paradigm, only single show, does not require pairings
- IRMA (Irma.app) implements Idemix on a smart phone app + provides support for Identity Providers and Service Providers

Other credential schemes

- U-Prove by Stefan Brands/Microsoft around 2000; single show
 - Based on the blind signing paradigm
 - Standard discrete-logarithm based setting, no pairings
 - To get unlinkability: use a credential only once, no verifier unlinkability
- Identity Mixer (Idemix) by Jan Camenisch and Anna Lysyanskaya/IBM research around 2002; multi-show
 - Based on signature scheme + proof of knowledge of signature
 - Setting 1: strong RSA assumption, large key sizes required
 - Setting 2: elliptic curve/pairing based setting
 - Supports a large number of extensions, including range proofs, key escrow, domain specific pseudonyms

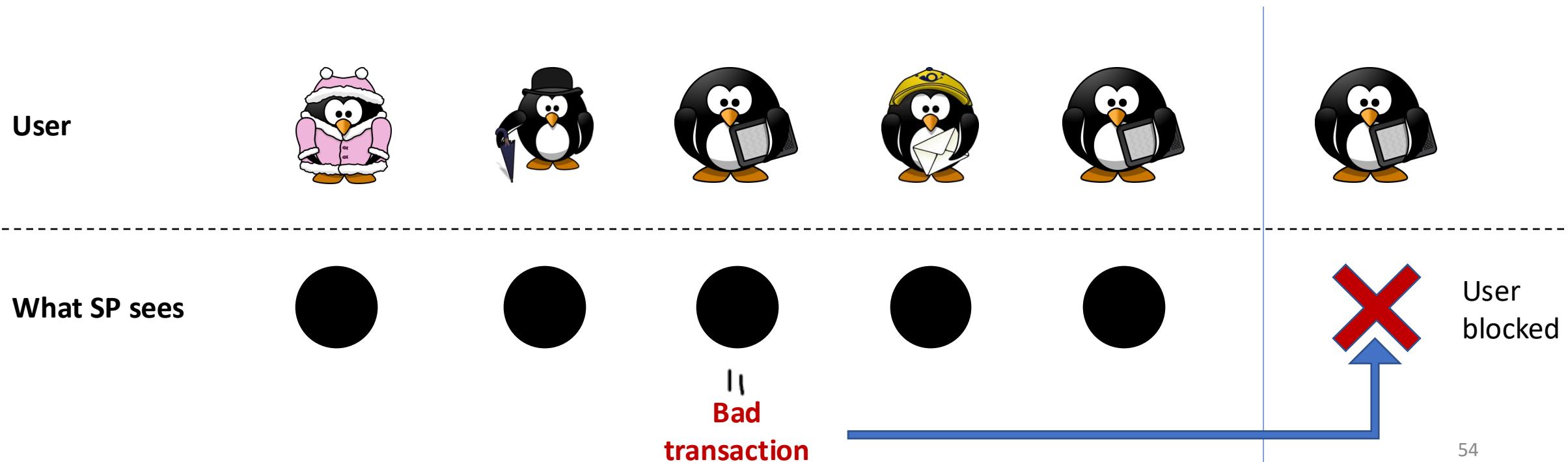
Example: Today's Live Exercises

Revoking/blocking a credential

- The revoke/block a credential means to invalidate it
- Reasons:
 - User detects credentials are stolen
 - Issuer decides to withdraw statements
 - Credentials are being abused
- Questions to ask:
 - Who can initiate revocation/blocking? What information is needed?
 - Can users detect that they have been revoked/blocked? (Or can the revocation test be made in silence?)
 - Does the system provide backward unlinkability after revocation?

Blocklistable anonymous credentials

- What if we do *not* know the user's identity?
- -> block misbehaving anonymous users without needing to identify them

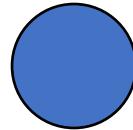
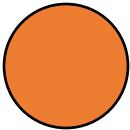
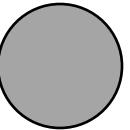
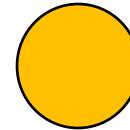
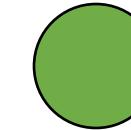


Blocklistable anonymous credentials, idea

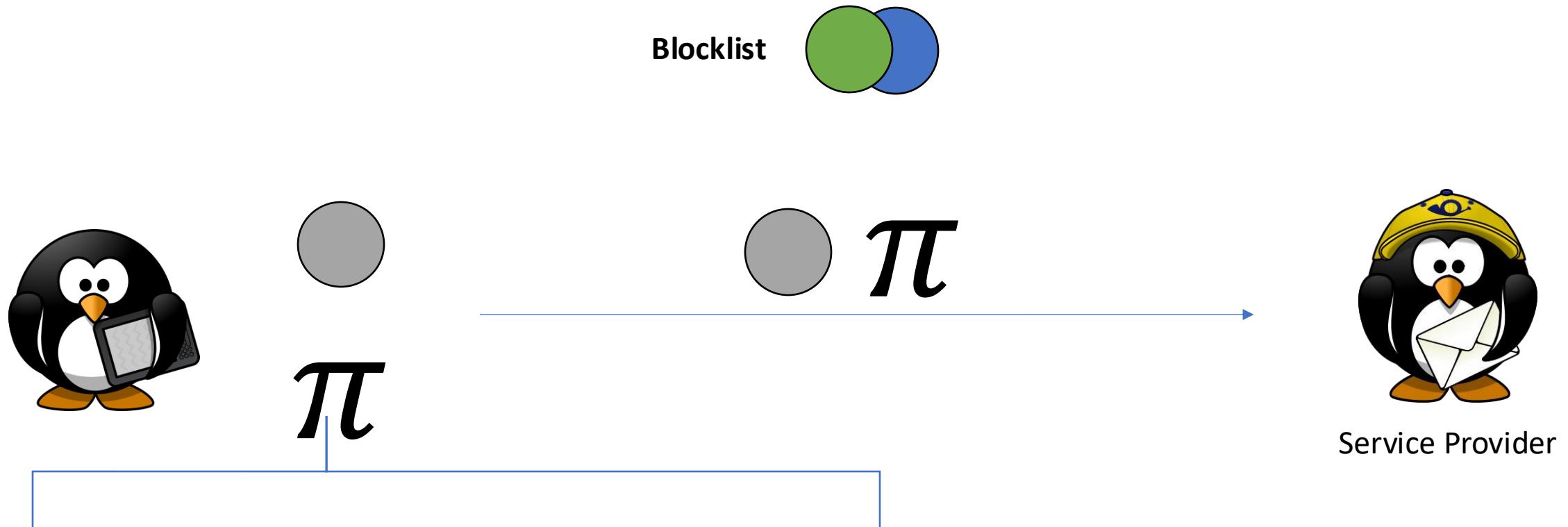
- For every transaction, user produces a token
- Tokens belong to users, but SP cannot determine which user
- Users use a credential to prove that the token is correctly formed

User

Token for SP



Blocklistable anonymous credentials, idea II



- Token is correct given credential
- None of the tokens on the blocklist are mine

Constructing tokens and proofs

- Every user has a credential σ , on secret s
- Tokens: $(h, t = h^s)$ where h a random element
- Blocklist: $BL = \{(h_1, t_1), \dots, (h_n, t_n)\}$
- Construct the proof:

Insert: big equation from before

$$PK \left\{ (\sigma): \begin{array}{c} \sigma \text{ over } s \wedge \\ t = h^s \wedge \\ \bigwedge_{i=1}^n (t_i \neq h_i^s) \end{array} \right\}$$

- Have credential
- Token correct
- Blocklisted tokens not mine

User driven revocation

- Tokens: $(h, t = h^s)$ where h a random element (again, prove correctness of this tuple w.r.t. user's credential)
- To revoke a credential, user makes s public
- Now verifiers can check a token (h, t) against all revoked s_1, \dots, s_n

Challenges:

- Check is linear in size of the revocation list (for verifier, constant time for user)
- Backward linking is possible, once secret s is known

Issuer driven revocation

- Issuer adds random attribute a_0
- User constructs token: $(h, t = h^{a_0})$ where h a random element (again, prove correctness of this tuple w.r.t. user's credential)
- Now issuer can reveal a_0 to revoke a credential

Challenges:

- Know who you want to block
- Issuer can trace users without their knowledge
- Does not give backward unlinkability

Alternative: use accumulators to hold a blocklist. Does not suffer from backward linkability.

Limiting the number of uses

n -times anonymous credentials can be used for at most n times. Thereafter, verifiers can recognize reuse.

How?

- Before: in blocklistable anonymous credentials, users can make unlimited number of tokens
- Idea: limit the number of tokens a user can create

Goals

What should you learn today?

- Understand **when to use** privacy-preserving authorization
- Basic understanding of **zero-knowledge proofs**
 - Key properties
 - Schnorr example
- Understand what are **attribute-based credentials**:
 - Trust assumptions & key properties
 - How to choose attributes sets
 - Pointcheval-Sanders example
- Understand basic methods to implement **attribute-based credentials**
 - More in the "Secret Stroll" project!
- Understand **practical issues** when using anonymous authentication

References

- Nigel Smart. Cryptography: An Introduction. 3rd edition online. Also available in print. Chapters 11 and 25.
- <https://privacypass.github.io/protocol/>
- David Pointcheval, Olivier Sanders. “Short Randomizable Signatures”. In CT-RSA 2016.
- Patrick P. Tsang, Man Ho Au, Apu Kapadia, Sean W. Smith. “BLAC: Revoking Repeatedly Misbehaving Anonymous Users without Relying on TTPs”. ACM Trans. Inf. Syst. Secur. 13(4) 2010.
- Jan Camenisch, Susan Hohenberger, Markulf Kohlweiss, Anna Lysyanskaya, and Mira Meyerovich. “How to win the clonewars: efficient periodic n -times anonymous authentication”. In: CCS 2006.
- Jan Camenisch, Markulf Kohlweiss, and Claudio Soriente. “An Accumulator Based on Bilinear Maps and Efficient Revocation for Anonymous Credentials”. In: PKC 2009.