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Introduction
Privacy-Preserving Authorization
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Course aim: learn toolbox for privacy engineering

tool
for building PETS

cryptographic
primitive

Network Layer

Application Layer



Goals
What should you learn today?
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▪ Understand when to use privacy-preserving authorization

▪ Basic understanding of zero-knowledge proofs
• Key properties
• Schnorr example

▪ Understand what are attribute-based credentials:
• Trust assumptions & key properties
• How to choose attributes sets
• Pointcheval-Sanders example

▪ Understand basic methods to implement attribute-based credentials
• More in the "Secret Stroll" project!

▪ Understand practical issues when using anonymous authentication



Introduction
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I can prove I am Mathilde

We know Mathilde 
and we know what 

she can access

Content Mathilde is 
allowed to see
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Identity is not relevant! 
Just that I am subscribed to certain content!

I can prove I am Mathilde

We know Mathilde 
and we know what 

she can access

Content Mathilde is 
allowed to see



Authentication vs. authorization

Authentication

• Username and password

• Biometrics

• Client certificates

• Challenge response with public 
key cryptography (ssh)

All of these identify the user. Is this 
always necessary?
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Authorization

• Check that this user is a real person 
and not a bot (Cloudflare)

• is an honest editor (Wikipedia)

• paid for this service (video streaming, 
music, games, etc.)

• is old enough to access this service

• is allowed to vote

None of these require identification. 
How do we build these?



Privacy-Preserving authorization
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▪A cryptographic primitive that enables 
users to prove possession of an attribute

▪Security property: the proving party 
cannot lie, and the verifying party cannot 
be convinced if not true

▪Privacy property: the verifying party 
cannot learn anything, other than the 
veracity of the statement proven (and 
what one infers from the statement itself)

▪Privacy-preserving authorization builds on 
zero-knowledge proofs

I can prove “I am allowed 
to use the service”

I am convinced! And I 
have learned nothing else

Alice



Zero-Knowledge 
Proofs
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Example 2 (PKI)

Prover: pk holder 
Statement: They know the private key sk 
corresponding to this public key pk.
Without revealing: the private key sk

Example 1 (In voting protocols)

Prover: Voter
Statement: This ciphertext c contains an 
encryption of 0 or 1.
Without revealing: the vote

Zero-knowledge proofs

A prover can use a zero-knowledge proof to prove that a statement is true, 
without revealing information beyond the fact that the statement is true.



Zero-knowledge proofs: properties

A prover can use a zero-knowledge proof to prove that a statement is true, 
without revealing information beyond the fact that the statement is true.

Completeness: If the statement is true, an honest prover can convince an 
honest verifier that the statement is true.

Soundness: If the statement is false, a cheating prover cannot convince an 
honest verifier with high probability (i.e., close to 1).

Zero-knowledge: If the statement is true, no verifier learns anything other than 
the fact that the statement is true.
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A prover can use a zero-knowledge proof to prove that a statement is true, 
without revealing information beyond the fact that the statement is true.



Prover: pk holder 
Statement: They know the private key sk corresponding to this public key pk.
Without revealing: the private key sk

A solution: Schnorr’s proof of identification !
Why does it have completeness? Soundness? ZK?

Deep Dive: Example 2 (PKI)



Cyclic group: 𝐺
Generator: 𝑔
Group order: 𝑝 (prime)
x ∈ ℤ𝑝

Discrete logarithm problem:
Given 𝑔, ℎ find 𝑥 st. ℎ = 𝑔𝑥

Schnorr’s proof of identification
Peggy wants to prove to Victor that she knows the 
private key 𝑥 corresponding to the public key h = g𝑥 
without revealing 𝑥.

Peggy Victor



Schnorr’s proof of identification

Common information:
• Group: 𝐺, 𝑔, 𝑝
• Public key: ℎ = 𝑔𝑥
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Peggy Victor

Peggy wants to prove to Victor that she knows the 
private key 𝑥 corresponding to the public key h = g𝑥 
without revealing 𝑥.

Cyclic group: 𝐺
Generator: 𝑔
Group order: 𝑝 (prime)
x ∈ ℤ𝑝

Discrete logarithm problem:
Given 𝑔, ℎ find 𝑥 st. ℎ = 𝑔𝑥



Peggy Victor

Pick 𝑟 ∈𝑅  ℤ𝑝 𝑅 = 𝑔𝑟

𝑠 = 𝑟 + 𝑥 mod p
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Common information:
• Group: 𝐺, 𝑔, 𝑝
• Public key: ℎ = 𝑔𝑥

Schnorr’s proof of identification (no c)
Peggy wants to prove to Victor that she knows the 
private key 𝑥 corresponding to the public key h = g𝑥 
without revealing 𝑥.

𝑅ℎ =? 𝑔𝑠 

Cyclic group: 𝐺
Generator: 𝑔
Group order: 𝑝 (prime)
x ∈ ℤ𝑝

Discrete logarithm problem:
Given 𝑔, ℎ find 𝑥 st. ℎ = 𝑔𝑥

Completeness: If Peggy is 
honest, she can convince 
Victor (honest verifier) that 
the statement is true.

Soundness: If Peggy is not 
honest, she cannot convince 
Victor (honest verifier) with 
high probability.

Zero-knowledge: Victor 
cannot learn anything  
about x.

No: R = 𝑔𝑠 / h 
always verifies



Peggy Victor

Pick 𝑟 ∈𝑅  ℤ𝑝 𝑅 = 𝑔𝑟

Pick 𝑐 ∈ {0,1}
𝑐

𝑠 = 𝑟 + 𝑐𝑥 mod p
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Common information:
• Group: 𝐺, 𝑔, 𝑝
• Public key: ℎ = 𝑔𝑥

Schnorr’s proof of identification (1-bit)
Peggy wants to prove to Victor that she knows the 
private key 𝑥 corresponding to the public key h = g𝑥 
without revealing 𝑥.

𝑅ℎ𝑐 =? 𝑔𝑠 

Cyclic group: 𝐺
Generator: 𝑔
Group order: 𝑝 (prime)
x ∈ ℤ𝑝

Discrete logarithm problem:
Given 𝑔, ℎ find 𝑥 st. ℎ = 𝑔𝑥



Peggy Victor

Pick 𝑟 ∈𝑅  ℤ𝑝 𝑅 = 𝑔𝑟

Pick 𝑐 ∈ {0,1}
𝑐
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Common information:
• Group: 𝐺, 𝑔, 𝑝
• Public key: ℎ = 𝑔𝑥

Schnorr’s proof of identification (1-bit)

Completeness: If Peggy is 
honest, she can convince 
Victor (honest verifier) that 
the statement is true.

Soundness: If Peggy is not 
honest, she cannot convince 
Victor (honest verifier) with 
high probability.

Zero-knowledge: Victor 
cannot learn anything  
about x.

𝑠 = 𝑟 + 𝑐𝑥 mod p

Peggy wants to prove to Victor that she knows the 
private key 𝑥 corresponding to the public key h = g𝑥 
without revealing 𝑥.

𝑅ℎ𝑐 =? 𝑔𝑠 

Cyclic group: 𝐺
Generator: 𝑔
Group order: 𝑝 (prime)
x ∈ ℤ𝑝

Discrete logarithm problem:
Given 𝑔, ℎ find 𝑥 st. ℎ = 𝑔𝑥

Can guess c and 
use trick or 
nothing: 0.5



Peggy Victor

Pick 𝑟 ∈𝑅  ℤ𝑝 𝑅 = 𝑔𝑟

Pick 𝑐 ∈𝑅 ℤ𝑝
𝑐
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Useful for 
project

Common information:
• Group: 𝐺, 𝑔, 𝑝
• Public key: ℎ = 𝑔𝑥

Schnorr’s proof of identification (n-bits)

Commitment

Challenge

Response

𝑅ℎ𝑐 =? 𝑔𝑠 

𝑠 = 𝑟 + 𝑐𝑥 mod p

Peggy wants to prove to Victor that she knows the 
private key 𝑥 corresponding to the public key h = g𝑥 
without revealing 𝑥.

Completeness: If Peggy is 
honest, she can convince 
Victor (honest verifier) that 
the statement is true.

Soundness: If Peggy is not 
honest, she cannot convince 
Victor (honest verifier) with 
high probability.

Zero-knowledge: Victor 
cannot learn anything  
about x.

Cyclic group: 𝐺
Generator: 𝑔
Group order: 𝑝 (prime)
x ∈ ℤ𝑝

Discrete logarithm problem:
Given 𝑔, ℎ find 𝑥 st. ℎ = 𝑔𝑥

Guess with 1/p



Peggy Victor

Pick 𝑟 ∈𝑅  ℤ𝑝 𝑅 = 𝑔𝑟

Pick 𝑐 ∈𝑅 ℤ𝑝
𝑐
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Common information:
• Group: 𝐺, 𝑔, 𝑝
• Public key: ℎ = 𝑔𝑥

Schnorr’s proof of identification 

𝑅ℎ𝑐 =? 𝑔𝑠 

𝑠 = 𝑟 + 𝑐𝑥 mod p

Peggy wants to prove to Victor that she knows the 
private key 𝑥 corresponding to the public key h = g𝑥 
without revealing 𝑥.

Completeness: If Peggy is 
honest, she can convince 
Victor (honest verifier) that 
the statement is true.

Soundness: If Peggy is not 
honest, she cannot convince 
Victor (honest verifier) with 
high probability.

Zero-knowledge: Victor 
cannot learn anything  
about x.

Short Notation: 
PK{ 𝑥 : ℎ = 𝑔𝑥}

Cyclic group: 𝐺
Generator: 𝑔
Group order: 𝑝 (prime)
x ∈ ℤ𝑝

Discrete logarithm problem:
Given 𝑔, ℎ find 𝑥 st. ℎ = 𝑔𝑥

Proving knowledge of a Pedersen’s 
commitment: 

PK 𝑥, 𝑟 : 𝐶 = 𝑔1
𝑥𝑔2

𝑟  



Non-interactive proofs: Fiat--Shamir heuristic

• Interaction is costly, requires communication rounds with verifier. Verifier 
needs to be online.

Fiat-Shamir heuristic:

• Turns interactive commitment-challenge-response protocols (called sigma-
protocols) into non-interactive protocols

• Replace challenge c with cryptographic hash of:
• All public values
and
• All commitments of the first step

• This proof is not zero-knowledge. Why?
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Peggy Victor

Pick 𝑟 ∈𝑅  ℤ𝑝

𝑅 = 𝑔𝑟
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Common information:
• Group: 𝐺, 𝑔, 𝑝
• Public key: ℎ = 𝑔𝑥

Schnorr’s proof of identification

𝑅ℎ𝑐 =? 𝑔𝑠 

R, c, 𝑠 = 𝑟 + 𝑐𝑥 mod p

Peggy wants to prove to Victor that she knows the 
private key 𝑥 corresponding to the public key h = g𝑥 
without revealing 𝑥.

Cyclic group: 𝐺
Generator: 𝑔
Group order: 𝑝 (prime)
x ∈ ℤ𝑝

Discrete logarithm problem:
Given 𝑔, ℎ find 𝑥 st. ℎ = 𝑔𝑥

𝑐 = 𝐻(𝑔 ∥ ℎ ∥ 𝑅)



Peggy Victor

Pick 𝑟 ∈𝑅  ℤ𝑝

𝑅 = 𝑔𝑟
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Common information:
• Group: 𝐺, 𝑔, 𝑝
• Public key: ℎ = 𝑔𝑥

Schnorr’s proof of identification

R, c, 𝑠 = 𝑟 + 𝑐𝑥 mod p

Peggy wants to prove to Victor that she knows the 
private key 𝑥 corresponding to the public key h = g𝑥 
without revealing 𝑥.

Cyclic group: 𝐺
Generator: 𝑔
Group order: 𝑝 (prime)
x ∈ ℤ𝑝

Discrete logarithm problem:
Given 𝑔, ℎ find 𝑥 st. ℎ = 𝑔𝑥

𝑐 = 𝐻(𝑔 ∥ ℎ ∥ 𝑅)

𝑅′ = 𝑔𝑠ℎ−𝑐

𝑐′ = 𝐻(𝑔 ∥ ℎ ∥ 𝑅′)
         𝑐 =? 𝑐′𝑅ℎ𝑐 =? 𝑔𝑠



Peggy Victor

Pick 𝑟 ∈𝑅  ℤ𝑝
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Common information:
• Group: 𝐺, 𝑔, 𝑝
• Public key: ℎ = 𝑔𝑥

• Message m

Schnorr’s signature

c, 𝑠 = 𝑟 + 𝑐𝑥 mod p

Peggy with public key h wants to sign m.

Cyclic group: 𝐺
Generator: 𝑔
Group order: 𝑝 (prime)
x ∈ ℤ𝑝

Discrete logarithm problem:
Given 𝑔, ℎ find 𝑥 st. ℎ = 𝑔𝑥

𝑐 = 𝐻(𝑔 ∥ ℎ ∥ 𝑅 ∥ 𝑚)

𝑅′ = 𝑔𝑠ℎ−𝑐

𝑐′ = 𝐻(𝑔 ∥ ℎ ∥ 𝑅′ ∥ 𝑚)
         𝑐 =? 𝑐′

Signature

𝑅 = 𝑔𝑟



Proof of knowledge: There exists an extractor that, given a successful 
prover, can extract the witness (value of which knowledge is being proved).

𝑅 = 𝑔𝑟

𝑐

𝑠 ≡ 𝑟 + 𝑐𝑥

Verify:
𝑅ℎ𝑐 = 𝑔𝑠 

Commitment

Challenge

Response

Run 1

rewind

𝑐′

𝑠′ ≡ 𝑟 + 𝑐′𝑥

Verify:

𝑅ℎ𝑐′
= 𝑔𝑠′

 

ℎ𝑐 −𝑐′
= 𝑔𝑠 −𝑠′

thus

ℎ = 𝑔(𝑠 −𝑠′)/(𝑐 −𝑐′)

thus

𝑥 ≡
𝑠 − 𝑠′

𝑐 − 𝑐′

Run 2
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The extractor acts as the 
verifier, and can rewind prover 

(this can never happen to a 
normal prover)

Proof of Knowledge - Extractor



Zero-knowledge proofs in the wild

Critical building block in many cryptographic and privacy-enhancing 
technologies.

• Zcash digital currency (but uses a different type of proofs)

• Other types of electronic cash based on tokens

• Electronic voting systems

• Private (smart) metering

• Privacy friendly reputation system

27



Example: privacy pass

When browsing websites 
using Tor, users frequently 
have to solve CAPTCHAs.

Why?

28



Example: privacy pass
• Goal: automatically allow real users (humans) from bots, 

implemented by Cloudflare and Tor browser.

Step 1: Obtain tokens

Solve a CAPTCHA

Obtain Tokens

T
T

T T
T
TT

T

Tor

Step 2: Spend tokens instead of solving CAPTCHA

Website?

Token or CAPTCHA?

T
T

T

T

T
TT

T

Tor

29

• What do we do not want?
 Cloudflare learning pairs: (“I am human Mathilde”, website I visit) 



Property: unlinkability
• Cloudflare (the adversary) should not be able to link tokens by the same user.

• Modelled using an indistinguishability game which captures something 
stronger: can Cloudflare distinguish between two users?

T
T T

T
TT

T

Obtain Tokens

Spend Token
T

T T
T
TT

T

Phase 1: obtain/spend tokens

Phase 2: challenge phase

T T

30

or

Obtain Tokens

Spend Token



Implementing privacy pass
Obtaining a token

Pick 𝑡 ∈𝑅 0,1 128

𝐵 = 𝐻 𝑡 𝑏

Private key: 𝑥
Public key: ℎ = 𝑔𝑥

𝐶 = 𝐵𝑠

Showing a token

𝑡, 𝑇

Check:
𝑓(𝑡, 𝑥) = 𝑇

t, T
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Server has: private key x
Client has: value t

Client learns: T = 𝑓(𝑡, 𝑥) (but not x)
Server learns: nothing

Cryptography sidebar

Cyclic group: 𝐺
Generator: 𝑔
Group order: 𝑝 (prime)

Discrete logarithm problem:
Given 𝑔, ℎ find 𝑥 st. ℎ = 𝑔𝑥

Hash function: 𝐻: 0,1 ∗ → 𝐺

OPRF 
Protocol



Implementing privacy pass
Obtaining a token

Pick 𝑡 ∈𝑅 0,1 128

𝐵 = 𝐻 𝑡 𝑏

Private key: 𝑥
Public key: ℎ = 𝑔𝑥

𝐶 = 𝐵𝑠

Showing a token

𝑡, 𝑇

t, T
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Server has: private key x
Client has: value t

Client learns: T = 𝐻(𝑡)𝑥 (but not x)
Server learns: nothing

Cryptography sidebar

Cyclic group: 𝐺
Generator: 𝑔
Group order: 𝑝 (prime)

Discrete logarithm problem:
Given 𝑔, ℎ find 𝑥 st. ℎ = 𝑔𝑥

Hash function: 𝐻: 0,1 ∗ → 𝐺

Check:
𝑓(𝑡, 𝑥) = 𝑇



Implementing privacy pass
Obtaining a token

Pick 𝑡 ∈𝑅 0,1 128

Pick 𝑏 ∈𝑅 ℤ𝑝
𝐵 = 𝐻 𝑡 𝑏

𝐶 = 𝐵𝑥

Showing a token

𝑡, 𝑇
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Private key: 𝑥
Public key: ℎ = 𝑔𝑥

Cryptography sidebar

Cyclic group: 𝐺
Generator: 𝑔
Group order: 𝑝 (prime)

Discrete logarithm problem:
Given 𝑔, ℎ find 𝑥 st. ℎ = 𝑔𝑥

Hash function: 𝐻: 0,1 ∗ → 𝐺

or

𝑇 = 𝐶𝑏−1

= 𝐻(𝑡)𝑥

t, T

?

• How can ZKP help here?

𝑷𝑲{ 𝒙 : 𝒉 = 𝒈𝒙

∧ 𝑪 = 𝑩𝒙}

Check:
𝑓(𝑡, 𝑥) = 𝑇



Attribute-based 
credentials

34



Attribute-based credentials

• Also known as anonymous credentials

• As opposed to tokens, can contain other attributes

• Attributes are encoded as numbers, may represent:
• Membership status (normal user, premium user)

• Name

• Age

• Social security number

• Random identifiers and secret keys

• Application specific identifiers

• ...

Credential

Secret key

Name

Age

Membership number

Membership type

35

Signed by
an issuer

https://pixabay.com/en/photos/seal/?image_type=illustration


Obtaining credentials and showing credentials

Issuer/IdP

User

2. Find attributes

Credential

Secret key

Age

Membership number

Verifier/SP 36

https://pixabay.com/en/photos/seal/?image_type=illustration


Unforgeability: only the issuer should be able to produce valid 
credentials.

Selective disclosure: the user can hide irrelevant attributes

Issuer unlinkability: the issuer should not be able to recognize a 
credential that it previously issued

Verifier unlinkability: the verifier should not be able to link two 
consecutive showings of the same credential

37

Attribute-based credentials: properties



Selective disclosure

User

Credential

Secret key

Age

Membership number
Verifier/SP

a. Request service

b. Request credential

c. Show credential

Credential

Secret key

Age

Membership number

The user can hide irrelevant attributes. But the verifier can still 
check the validity of the credential.
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https://pixabay.com/en/photos/seal/?image_type=illustration
https://pixabay.com/en/photos/seal/?image_type=illustration
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Construction 1: traditional signatures



Issuer Unlinkability

• The issuer should not be 
able to recognize a 
credential that it previously 
issued

• Modelled using an 
indistinguishability game.

• Phase 1: obtain credentials

• Phase 2: challenge phase, 
distinguish users

Obtain Credential

Obtain Credential

Phase 1: obtain credentials

Phase 2: challenge phase

Note: both credentials should “look” the same, they
should disclose  the same attributes.

or

40

https://pixabay.com/en/photos/seal/?image_type=illustration
https://pixabay.com/en/photos/seal/?image_type=illustration
https://pixabay.com/en/photos/seal/?image_type=illustration
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Construction 2: blind signatures

• Blind signature: signer signs a 
message m without knowing what 
it signs. Moreover, it cannot later 
recognize this signature.

• Property: exactly as issuer 
unlinkability.

• Implemented by: U-Prove by 
Microsoft (2000), but also 
Anonymous Credentials Light 
(2013), and PrivacyPass

812726
712389

A simple physical blind signature scheme

Step 1: write down
serial number

Step 2: place in envelope
with carbon paper

81
27

2
6

71
23

8
9

Step 3: issuer signs
the envelope

Step 4: user recovers
signed statement

812726
712389
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Verifier (multi-show) Unlinkability

• The verifier should not be 
able to recognize a 
credential that it previously 
saw

• Modelled using an 
indistinguishability game.

• Phase 1: see credentials for 
different users

• Phase 2: challenge phase, 
distinguish users

Show Credential

Show Credential

Phase 1: see credentials

Phase 2: challenge phase

Note: both credentials should “look” the same, they
should disclose the same attributes (key and value).

or

42
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Construction 3: proving having signature  

1. Commit to user-defined attributes
2. Find other
attributes3. Return signature σ on attributes

Issuing a credential
Not always a blind 

signature

User

Credential

Secret key

Age

Membership number

Verifier/SP

Showing a credential

User proves: “I have a valid
signature σ on some attributes”

43

https://pixabay.com/en/photos/seal/?image_type=illustration
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Deep Dive: Pointcheval-Sanders credential

Credential

a1

a2

…

aL

A solution: Pointcehval-Sanders
Why does it have unforgeability? Selective disclosure? I&V unlinkability?

https://pixabay.com/en/photos/seal/?image_type=illustration


The next 3 slides are full of math, AGAIN 

but then we’re done for today 

45

Pointcheval-Sanders credential



Pointcheval-Sanders signatures

Key generation

• Pick generator ෤𝑔 ∈𝑅 𝐺2

• Private key: (𝑥, 𝑦1, … , 𝑦𝐿) ∈𝑅ℤ𝑝

• Public key:
( ෤𝑔, ෨𝑋, ෩𝑌1, … , ෩𝑌𝐿) = ( ෤𝑔, ෤𝑔𝑥 , ෤𝑔𝑦1 , … , ෤𝑔𝑦𝐿)

Signing tuple (𝑚1, … , 𝑚𝐿)

• Pick ℎ ∈𝑅 𝐺1
∗ and output

• Signature 𝜎 = ℎ, ℎ𝑥+∑𝑦𝑖𝑚𝑖

Cyclic groups: 𝐺1, 𝐺2, 𝐺𝑇

Generators: 𝑔, ෤𝑔, 𝑔𝑇

Group order: 𝑝

Pairing: 𝑒 ∶ 𝐺1 × 𝐺2 → 𝐺𝑇

Bilinear: 𝑒 𝑔𝑎, ෤𝑔𝑏 = 𝑒 𝑔, ෤𝑔 𝑎𝑏

Verifying a signature:
• Given a signature 𝜎 = (𝜎1, 𝜎2)
• Message: (𝑚1, … , 𝑚𝐿)
• And public key ( ෤𝑔, ෨𝑋, ෩𝑌1, … , ෩𝑌𝐿)
• Check:

• 𝜎1 ≠ 1𝐺1

• 𝑒 𝜎1, ෨𝑋 ⋅ ∏෩𝑌𝑖
𝑚𝑖 = e(𝜎2, ෤𝑔) 
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Pointcheval-Sanders credential

Details in 
handout



Proof shows that C is 
correctly formed.

What goes wrong if 
you omit this?

Cyclic groups: 𝐺1, 𝐺2, 𝐺𝑇

Generators: 𝑔, ෤𝑔, 𝑔𝑇

Group order: 𝑝

Pairing: 𝑒 ∶ 𝐺1 × 𝐺2 → 𝐺𝑇

Bilinear: 𝑒 𝑔𝑎, ෤𝑔𝑏 = 𝑒 𝑔, ෤𝑔 𝑎𝑏

PS Signatures
Private key: 
(𝑥, 𝑦1, … , 𝑦𝐿) ∈𝑅ℤ𝑝

𝑋 = 𝑔𝑥

Public key:
𝑔, 𝑌𝑖 = 𝑔, 𝑔𝑦𝑖 ∈ 𝐺1

෤𝑔, ෨𝑋, ෩𝑌𝑖 = ෤𝑔, ෤𝑔𝑥, ෤𝑔𝑦𝑖 ∈ 𝐺2

Signature: 𝜎 = (𝜎1, 𝜎2) such that

𝜎 = ℎ, ℎ𝑥+∑𝑦𝑖𝑎𝑖 ∈ 𝐺1
2
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Attribute sets:
U: attributes determined by user 
(hidden from issuer)
I: attributes determined by issuer

Issuing a PS credential

• User commits to hidden attributes, pick 𝑡 ∈𝑅  ℤ𝑝:

𝐶 = 𝑔𝑡 ෑ

𝑖∈𝑈

𝑌𝑖
𝑎𝑖

• And proves that she did so correctly:

𝑃𝐾 𝑡, 𝑎𝑖 𝑖∈𝑈 : 𝐶 = 𝑔𝑡 ෑ

𝑖∈𝑈

𝑌𝑖
𝑎𝑖

• Issuer verifies the proof, picks 𝑢 ∈𝑅  ℤ𝑝 and sets:

𝜎′ = 𝑔𝑢 , 𝑋𝐶 ෑ

𝑖∈𝐼

𝑌𝑖
𝑎𝑖

𝑢

• User forms signature 𝜎 = (𝜎1
′,

𝜎2
′

𝜎1
′ 𝑡)

Pointcheval-Sanders credential



Proving possession of a credential

• User has a credential 𝜎 = (𝜎1, 𝜎2) on 𝑎1, … , 𝑎𝐿

• Pick 𝑟, 𝑡 ∈𝑅  ℤ𝑝 and compute 𝜎′ = 𝜎1
𝑟 , (𝜎2𝜎1

𝑡 𝑟)

• Send 𝜎′ and disclosed attributes 𝑎𝑖 𝑖∈𝐷

• And proves that the signature is valid:

𝑃𝐾

𝑡, 𝑎𝑖 𝑖∈𝐻 :
𝑒 𝜎2

′ , ෤𝑔 ∏𝑖∈𝐷 𝑒 𝜎1
′, ෨𝑌𝑗

−𝑎𝑖

𝑒 𝜎1
′, ෨𝑋

=

𝑒 𝜎1
′, ෤𝑔 𝑡 ෑ

𝑖∈𝐻

𝑒 𝜎1
′, ෩𝑌𝑖

𝑎𝑖

• The verifier accepts if proof is valid and 𝜎1
′ ≠ 1

48𝑒 𝜎1
′, ෤𝑔𝑡 ෨𝑋 ⋅ ∏෩𝑌𝑖

𝑎𝑖 = e(𝜎2
′ , ෤𝑔) 

Attribute sets:
H: hidden attributes
D: disclosed attributes
Different from previous slide!!! 

What goes wrong if you omit this?

Pointcheval-Sanders credential
Cyclic groups: 𝐺1, 𝐺2, 𝐺𝑇

Generators: 𝑔, ෤𝑔, 𝑔𝑇

Group order: 𝑝

Pairing: 𝑒 ∶ 𝐺1 × 𝐺2 → 𝐺𝑇

Bilinear: 𝑒 𝑔𝑎, ෤𝑔𝑏 = 𝑒 𝑔, ෤𝑔 𝑎𝑏

PS Signatures
Private key: 
(𝑥, 𝑦1, … , 𝑦𝐿) ∈𝑅ℤ𝑝

𝑋 = 𝑔𝑥

Public key:
𝑔, 𝑌𝑖 = 𝑔, 𝑔𝑦𝑖 ∈ 𝐺1

෤𝑔, ෨𝑋, ෩𝑌𝑖 = ෤𝑔, ෤𝑔𝑥, ෤𝑔𝑦𝑖 ∈ 𝐺2

Signature: 𝜎 = (𝜎1, 𝜎2) such that

𝜎 = ℎ, ℎ𝑥+∑𝑦𝑖𝑎𝑖 ∈ 𝐺1
2



• Unforgeability: yes, from the PS signatures

• Selective disclosure: yes, use proof of knowledge to prove that the 
signature is valid without revealing all the attributes

• Issuer & verifier unlinkability: yes. Informally, the randomization and 
the proof of knowledge hide the signature. Therefore, neither the 
issuer (signer) nor the verifier can recognize it.
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Pointcheval-Sanders credential

Properties



ABCs in the wild

• Algebraic MACs (2014): assumes issuer and 
verifier are same, but has multi-show 
unlinkability, does not require pairings

• Anonymous Credentials Light (2013): uses the 
blind-signature paradigm, only single show, 
does not require pairings

• IRMA (Irma.app) implements Idemix on a 
smart phone app + provides support for 
Identity Providers and Service Providers 
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Other credential schemes

• U-Prove by Stefan Brands/Microsoft around 2000; single show
• Based on the blind signing paradigm

• Standard discrete-logarithm based setting, no pairings

• To get unlinkability: use a credential only once, no verifier unlinkability

• Identity Mixer (Idemix) by Jan Camenisch and Anna Lysyanskaya/IBM 
research around 2002; multi-show
• Based on signature scheme + proof of knowledge of signature

• Setting 1: strong RSA assumption, large key sizes required

• Setting 2: elliptic curve/pairing based setting

• Supports a large number of extensions, including range proofs, key escrow, 
domain specific pseudonyms
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Example: Today’s Live Exercises
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Revoking/blocking a credential

• The revoke/block a credential means to invalidate it

• Reasons:
• User detects credentials are stolen

• Issuer decides to withdraw statements

• Credentials are being abused

• Questions to ask:
• Who can initiate revocation/blocking? What information is needed?

• Can users detect that they have been revoked/blocked? (Or can the 
revocation test be made in silence?)

• Does the system provide backward unlinkability after revocation?
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Blocklistable anonymous credentials

• What if we do not know the user’s identity?

• -> block misbehaving anonymous users without needing to identify 
them

What SP sees

User

Bad
transaction

User
blocked
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Blocklistable anonymous credentials, idea

• For every transaction, user produces a token

• Tokens belong to users, but SP cannot determine which user

• Users use a credential to prove that the token is correctly formed

Token for SP

User
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Blocklistable anonymous credentials, idea II

Service Provider

Blocklist

• Token      is correct given credential
• None of the tokens on the blocklist 

are mine

𝜋
𝜋
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Constructing tokens and proofs 

• Every user has a credential 𝜎, on secret 𝑠

• Tokens: ℎ, 𝑡 =  ℎ𝑠  where ℎ a random element

• Blocklist: 𝐵𝐿 = { ℎ1, 𝑡1 , … , (ℎ𝑛, 𝑡𝑛)}

• Construct the proof:

𝑃𝐾 𝜎 :

σ over 𝑠 ∧
𝑡 = ℎ𝑠 ∧

ሥ

𝑖=1

𝑛

𝑡𝑖 ≠ ℎ𝑖
𝑠

Have credential

Token correct

Blocklisted 
tokens

not mine
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Insert: big 
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before



User driven revocation

• Tokens: ℎ, 𝑡 =  ℎ𝑠  where ℎ a random element (again, prove 
correctness of this tuple w.r.t. user’s credential)

• To revoke a credential, user makes s public

• Now verifiers can check a token ℎ, 𝑡  against all revoked 𝑠1, … , 𝑠𝑛

Challenges:

• Check is linear in size of the revocation list (for verifier, constant time 
for user)

• Backward linking is possible, once secret s is known
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Issuer driven revocation

• Issuer adds random attribute a0

• User constructs token: ℎ, 𝑡 =  ℎ𝑎0  where ℎ a random element 
(again, prove correctness of this tuple w.r.t. user’s credential)

• Now issuer can reveal a0 to revoke a credential

Challenges:

• Know who you want to block 

• Issuer can trace users without their knowledge

• Does not give backward unlinkability

Alternative: use 
accumulators to hold 
a blocklist. Does not 

suffer from backward 
linkability.
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Limiting the number of uses

n-times anonymous credentials can be used for at most n times. 
Thereafter, verifiers can recognize reuse.

How?

• Before: in blocklistable anonymous credentials, users can make 
unlimited number of tokens

• Idea: limit the number of tokens a user can create
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Goals
What should you learn today?

61

▪ Understand when to use privacy-preserving authorization

▪ Basic understanding of zero-knowledge proofs
• Key properties
• Schnorr example

▪ Understand what are attribute-based credentials:
• Trust assumptions & key properties
• How to choose attributes sets
• Pointcheval-Sanders example

▪ Understand basic methods to implement attribute-based credentials
• More in the "Secret Stroll" project!

▪ Understand practical issues when using anonymous authentication
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