
CS-523 Advanced topics on
Privacy Enhancing Technologies

Privacy-Preserving Authorization

Mathilde Raynal
SPRING Lab

mathilde.raynal@epfl.ch

Slides credit: Carmela Troncoso, Wouter Lueks

Introduction
Privacy-Preserving Authorization

2

Course aim: learn toolbox for privacy engineering

tool
for building PETS

cryptographic
primitive

Network Layer

Application Layer

Goals
What should you learn today?

3

▪ Understand when to use privacy-preserving authorization

▪ Basic understanding of zero-knowledge proofs
• Key properties
• Schnorr example

▪ Understand what are attribute-based credentials:
• Trust assumptions & key properties
• How to choose attributes sets
• Pointcheval-Sanders example

▪ Understand basic methods to implement attribute-based credentials
• More in the "Secret Stroll" project!

▪ Understand practical issues when using anonymous authentication

Introduction

4

5

I can prove I am Mathilde

We know Mathilde
and we know what

she can access

Content Mathilde is
allowed to see

6

Identity is not relevant!
Just that I am subscribed to certain content!

I can prove I am Mathilde

We know Mathilde
and we know what

she can access

Content Mathilde is
allowed to see

Authentication vs. authorization

Authentication

• Username and password

• Biometrics

• Client certificates

• Challenge response with public
key cryptography (ssh)

All of these identify the user. Is this
always necessary?

7

Authorization

• Check that this user is a real person
and not a bot (Cloudflare)

• is an honest editor (Wikipedia)

• paid for this service (video streaming,
music, games, etc.)

• is old enough to access this service

• is allowed to vote

None of these require identification.
How do we build these?

Privacy-Preserving authorization

8

▪A cryptographic primitive that enables
users to prove possession of an attribute

▪Security property: the proving party
cannot lie, and the verifying party cannot
be convinced if not true

▪Privacy property: the verifying party
cannot learn anything, other than the
veracity of the statement proven (and
what one infers from the statement itself)

▪Privacy-preserving authorization builds on
zero-knowledge proofs

I can prove “I am allowed
to use the service”

I am convinced! And I
have learned nothing else

Alice

Zero-Knowledge
Proofs

9

10

Example 2 (PKI)

Prover: pk holder
Statement: They know the private key sk
corresponding to this public key pk.
Without revealing: the private key sk

Example 1 (In voting protocols)

Prover: Voter
Statement: This ciphertext c contains an
encryption of 0 or 1.
Without revealing: the vote

Zero-knowledge proofs

A prover can use a zero-knowledge proof to prove that a statement is true,
without revealing information beyond the fact that the statement is true.

Zero-knowledge proofs: properties

A prover can use a zero-knowledge proof to prove that a statement is true,
without revealing information beyond the fact that the statement is true.

Completeness: If the statement is true, an honest prover can convince an
honest verifier that the statement is true.

Soundness: If the statement is false, a cheating prover cannot convince an
honest verifier with high probability (i.e., close to 1).

Zero-knowledge: If the statement is true, no verifier learns anything other than
the fact that the statement is true.

11

A prover can use a zero-knowledge proof to prove that a statement is true,
without revealing information beyond the fact that the statement is true.

Prover: pk holder
Statement: They know the private key sk corresponding to this public key pk.
Without revealing: the private key sk

A solution: Schnorr’s proof of identification !
Why does it have completeness? Soundness? ZK?

Deep Dive: Example 2 (PKI)

Cyclic group: 𝐺
Generator: 𝑔
Group order: 𝑝 (prime)
x ∈ ℤ𝑝

Discrete logarithm problem:
Given 𝑔, ℎ find 𝑥 st. ℎ = 𝑔𝑥

Schnorr’s proof of identification
Peggy wants to prove to Victor that she knows the
private key 𝑥 corresponding to the public key h = g𝑥
without revealing 𝑥.

Peggy Victor

Schnorr’s proof of identification

Common information:
• Group: 𝐺, 𝑔, 𝑝
• Public key: ℎ = 𝑔𝑥

14

Peggy Victor

Peggy wants to prove to Victor that she knows the
private key 𝑥 corresponding to the public key h = g𝑥
without revealing 𝑥.

Cyclic group: 𝐺
Generator: 𝑔
Group order: 𝑝 (prime)
x ∈ ℤ𝑝

Discrete logarithm problem:
Given 𝑔, ℎ find 𝑥 st. ℎ = 𝑔𝑥

Peggy Victor

Pick 𝑟 ∈𝑅 ℤ𝑝 𝑅 = 𝑔𝑟

𝑠 = 𝑟 + 𝑥 mod p

15

Common information:
• Group: 𝐺, 𝑔, 𝑝
• Public key: ℎ = 𝑔𝑥

Schnorr’s proof of identification (no c)
Peggy wants to prove to Victor that she knows the
private key 𝑥 corresponding to the public key h = g𝑥
without revealing 𝑥.

𝑅ℎ =? 𝑔𝑠

Cyclic group: 𝐺
Generator: 𝑔
Group order: 𝑝 (prime)
x ∈ ℤ𝑝

Discrete logarithm problem:
Given 𝑔, ℎ find 𝑥 st. ℎ = 𝑔𝑥

Completeness: If Peggy is
honest, she can convince
Victor (honest verifier) that
the statement is true.

Soundness: If Peggy is not
honest, she cannot convince
Victor (honest verifier) with
high probability.

Zero-knowledge: Victor
cannot learn anything
about x.

No: R = 𝑔𝑠 / h
always verifies

Peggy Victor

Pick 𝑟 ∈𝑅 ℤ𝑝 𝑅 = 𝑔𝑟

Pick 𝑐 ∈ {0,1}
𝑐

𝑠 = 𝑟 + 𝑐𝑥 mod p

16

Common information:
• Group: 𝐺, 𝑔, 𝑝
• Public key: ℎ = 𝑔𝑥

Schnorr’s proof of identification (1-bit)
Peggy wants to prove to Victor that she knows the
private key 𝑥 corresponding to the public key h = g𝑥
without revealing 𝑥.

𝑅ℎ𝑐 =? 𝑔𝑠

Cyclic group: 𝐺
Generator: 𝑔
Group order: 𝑝 (prime)
x ∈ ℤ𝑝

Discrete logarithm problem:
Given 𝑔, ℎ find 𝑥 st. ℎ = 𝑔𝑥

Peggy Victor

Pick 𝑟 ∈𝑅 ℤ𝑝 𝑅 = 𝑔𝑟

Pick 𝑐 ∈ {0,1}
𝑐

17

Common information:
• Group: 𝐺, 𝑔, 𝑝
• Public key: ℎ = 𝑔𝑥

Schnorr’s proof of identification (1-bit)

Completeness: If Peggy is
honest, she can convince
Victor (honest verifier) that
the statement is true.

Soundness: If Peggy is not
honest, she cannot convince
Victor (honest verifier) with
high probability.

Zero-knowledge: Victor
cannot learn anything
about x.

𝑠 = 𝑟 + 𝑐𝑥 mod p

Peggy wants to prove to Victor that she knows the
private key 𝑥 corresponding to the public key h = g𝑥
without revealing 𝑥.

𝑅ℎ𝑐 =? 𝑔𝑠

Cyclic group: 𝐺
Generator: 𝑔
Group order: 𝑝 (prime)
x ∈ ℤ𝑝

Discrete logarithm problem:
Given 𝑔, ℎ find 𝑥 st. ℎ = 𝑔𝑥

Can guess c and
use trick or
nothing: 0.5

Peggy Victor

Pick 𝑟 ∈𝑅 ℤ𝑝 𝑅 = 𝑔𝑟

Pick 𝑐 ∈𝑅 ℤ𝑝
𝑐

18

Useful for
project

Common information:
• Group: 𝐺, 𝑔, 𝑝
• Public key: ℎ = 𝑔𝑥

Schnorr’s proof of identification (n-bits)

Commitment

Challenge

Response

𝑅ℎ𝑐 =? 𝑔𝑠

𝑠 = 𝑟 + 𝑐𝑥 mod p

Peggy wants to prove to Victor that she knows the
private key 𝑥 corresponding to the public key h = g𝑥
without revealing 𝑥.

Completeness: If Peggy is
honest, she can convince
Victor (honest verifier) that
the statement is true.

Soundness: If Peggy is not
honest, she cannot convince
Victor (honest verifier) with
high probability.

Zero-knowledge: Victor
cannot learn anything
about x.

Cyclic group: 𝐺
Generator: 𝑔
Group order: 𝑝 (prime)
x ∈ ℤ𝑝

Discrete logarithm problem:
Given 𝑔, ℎ find 𝑥 st. ℎ = 𝑔𝑥

Guess with 1/p

Peggy Victor

Pick 𝑟 ∈𝑅 ℤ𝑝 𝑅 = 𝑔𝑟

Pick 𝑐 ∈𝑅 ℤ𝑝
𝑐

19

Common information:
• Group: 𝐺, 𝑔, 𝑝
• Public key: ℎ = 𝑔𝑥

Schnorr’s proof of identification

𝑅ℎ𝑐 =? 𝑔𝑠

𝑠 = 𝑟 + 𝑐𝑥 mod p

Peggy wants to prove to Victor that she knows the
private key 𝑥 corresponding to the public key h = g𝑥
without revealing 𝑥.

Completeness: If Peggy is
honest, she can convince
Victor (honest verifier) that
the statement is true.

Soundness: If Peggy is not
honest, she cannot convince
Victor (honest verifier) with
high probability.

Zero-knowledge: Victor
cannot learn anything
about x.

Short Notation:
PK{ 𝑥 : ℎ = 𝑔𝑥}

Cyclic group: 𝐺
Generator: 𝑔
Group order: 𝑝 (prime)
x ∈ ℤ𝑝

Discrete logarithm problem:
Given 𝑔, ℎ find 𝑥 st. ℎ = 𝑔𝑥

Proving knowledge of a Pedersen’s
commitment:

PK 𝑥, 𝑟 : 𝐶 = 𝑔1
𝑥𝑔2

𝑟

Non-interactive proofs: Fiat--Shamir heuristic

• Interaction is costly, requires communication rounds with verifier. Verifier
needs to be online.

Fiat-Shamir heuristic:

• Turns interactive commitment-challenge-response protocols (called sigma-
protocols) into non-interactive protocols

• Replace challenge c with cryptographic hash of:
• All public values
and
• All commitments of the first step

• This proof is not zero-knowledge. Why?

22

Peggy Victor

Pick 𝑟 ∈𝑅 ℤ𝑝

𝑅 = 𝑔𝑟

23

Common information:
• Group: 𝐺, 𝑔, 𝑝
• Public key: ℎ = 𝑔𝑥

Schnorr’s proof of identification

𝑅ℎ𝑐 =? 𝑔𝑠

R, c, 𝑠 = 𝑟 + 𝑐𝑥 mod p

Peggy wants to prove to Victor that she knows the
private key 𝑥 corresponding to the public key h = g𝑥
without revealing 𝑥.

Cyclic group: 𝐺
Generator: 𝑔
Group order: 𝑝 (prime)
x ∈ ℤ𝑝

Discrete logarithm problem:
Given 𝑔, ℎ find 𝑥 st. ℎ = 𝑔𝑥

𝑐 = 𝐻(𝑔 ∥ ℎ ∥ 𝑅)

Peggy Victor

Pick 𝑟 ∈𝑅 ℤ𝑝

𝑅 = 𝑔𝑟

24

Common information:
• Group: 𝐺, 𝑔, 𝑝
• Public key: ℎ = 𝑔𝑥

Schnorr’s proof of identification

R, c, 𝑠 = 𝑟 + 𝑐𝑥 mod p

Peggy wants to prove to Victor that she knows the
private key 𝑥 corresponding to the public key h = g𝑥
without revealing 𝑥.

Cyclic group: 𝐺
Generator: 𝑔
Group order: 𝑝 (prime)
x ∈ ℤ𝑝

Discrete logarithm problem:
Given 𝑔, ℎ find 𝑥 st. ℎ = 𝑔𝑥

𝑐 = 𝐻(𝑔 ∥ ℎ ∥ 𝑅)

𝑅′ = 𝑔𝑠ℎ−𝑐

𝑐′ = 𝐻(𝑔 ∥ ℎ ∥ 𝑅′)
 𝑐 =? 𝑐′𝑅ℎ𝑐 =? 𝑔𝑠

Peggy Victor

Pick 𝑟 ∈𝑅 ℤ𝑝

25

Common information:
• Group: 𝐺, 𝑔, 𝑝
• Public key: ℎ = 𝑔𝑥

• Message m

Schnorr’s signature

c, 𝑠 = 𝑟 + 𝑐𝑥 mod p

Peggy with public key h wants to sign m.

Cyclic group: 𝐺
Generator: 𝑔
Group order: 𝑝 (prime)
x ∈ ℤ𝑝

Discrete logarithm problem:
Given 𝑔, ℎ find 𝑥 st. ℎ = 𝑔𝑥

𝑐 = 𝐻(𝑔 ∥ ℎ ∥ 𝑅 ∥ 𝑚)

𝑅′ = 𝑔𝑠ℎ−𝑐

𝑐′ = 𝐻(𝑔 ∥ ℎ ∥ 𝑅′ ∥ 𝑚)
 𝑐 =? 𝑐′

Signature

𝑅 = 𝑔𝑟

Proof of knowledge: There exists an extractor that, given a successful
prover, can extract the witness (value of which knowledge is being proved).

𝑅 = 𝑔𝑟

𝑐

𝑠 ≡ 𝑟 + 𝑐𝑥

Verify:
𝑅ℎ𝑐 = 𝑔𝑠

Commitment

Challenge

Response

Run 1

rewind

𝑐′

𝑠′ ≡ 𝑟 + 𝑐′𝑥

Verify:

𝑅ℎ𝑐′
= 𝑔𝑠′

ℎ𝑐 −𝑐′
= 𝑔𝑠 −𝑠′

thus

ℎ = 𝑔(𝑠 −𝑠′)/(𝑐 −𝑐′)

thus

𝑥 ≡
𝑠 − 𝑠′

𝑐 − 𝑐′

Run 2

26

The extractor acts as the
verifier, and can rewind prover

(this can never happen to a
normal prover)

Proof of Knowledge - Extractor

Zero-knowledge proofs in the wild

Critical building block in many cryptographic and privacy-enhancing
technologies.

• Zcash digital currency (but uses a different type of proofs)

• Other types of electronic cash based on tokens

• Electronic voting systems

• Private (smart) metering

• Privacy friendly reputation system

27

Example: privacy pass

When browsing websites
using Tor, users frequently
have to solve CAPTCHAs.

Why?

28

Example: privacy pass
• Goal: automatically allow real users (humans) from bots,

implemented by Cloudflare and Tor browser.

Step 1: Obtain tokens

Solve a CAPTCHA

Obtain Tokens

T
T

T T
T
TT

T

Tor

Step 2: Spend tokens instead of solving CAPTCHA

Website?

Token or CAPTCHA?

T
T

T

T

T
TT

T

Tor

29

• What do we do not want?
 Cloudflare learning pairs: (“I am human Mathilde”, website I visit)

Property: unlinkability
• Cloudflare (the adversary) should not be able to link tokens by the same user.

• Modelled using an indistinguishability game which captures something
stronger: can Cloudflare distinguish between two users?

T
T T

T
TT

T

Obtain Tokens

Spend Token
T

T T
T
TT

T

Phase 1: obtain/spend tokens

Phase 2: challenge phase

T T

30

or

Obtain Tokens

Spend Token

Implementing privacy pass
Obtaining a token

Pick 𝑡 ∈𝑅 0,1 128

𝐵 = 𝐻 𝑡 𝑏

Private key: 𝑥
Public key: ℎ = 𝑔𝑥

𝐶 = 𝐵𝑠

Showing a token

𝑡, 𝑇

Check:
𝑓(𝑡, 𝑥) = 𝑇

t, T

31

Server has: private key x
Client has: value t

Client learns: T = 𝑓(𝑡, 𝑥) (but not x)
Server learns: nothing

Cryptography sidebar

Cyclic group: 𝐺
Generator: 𝑔
Group order: 𝑝 (prime)

Discrete logarithm problem:
Given 𝑔, ℎ find 𝑥 st. ℎ = 𝑔𝑥

Hash function: 𝐻: 0,1 ∗ → 𝐺

OPRF
Protocol

Implementing privacy pass
Obtaining a token

Pick 𝑡 ∈𝑅 0,1 128

𝐵 = 𝐻 𝑡 𝑏

Private key: 𝑥
Public key: ℎ = 𝑔𝑥

𝐶 = 𝐵𝑠

Showing a token

𝑡, 𝑇

t, T

32

Server has: private key x
Client has: value t

Client learns: T = 𝐻(𝑡)𝑥 (but not x)
Server learns: nothing

Cryptography sidebar

Cyclic group: 𝐺
Generator: 𝑔
Group order: 𝑝 (prime)

Discrete logarithm problem:
Given 𝑔, ℎ find 𝑥 st. ℎ = 𝑔𝑥

Hash function: 𝐻: 0,1 ∗ → 𝐺

Check:
𝑓(𝑡, 𝑥) = 𝑇

Implementing privacy pass
Obtaining a token

Pick 𝑡 ∈𝑅 0,1 128

Pick 𝑏 ∈𝑅 ℤ𝑝
𝐵 = 𝐻 𝑡 𝑏

𝐶 = 𝐵𝑥

Showing a token

𝑡, 𝑇

33

Private key: 𝑥
Public key: ℎ = 𝑔𝑥

Cryptography sidebar

Cyclic group: 𝐺
Generator: 𝑔
Group order: 𝑝 (prime)

Discrete logarithm problem:
Given 𝑔, ℎ find 𝑥 st. ℎ = 𝑔𝑥

Hash function: 𝐻: 0,1 ∗ → 𝐺

or

𝑇 = 𝐶𝑏−1

= 𝐻(𝑡)𝑥

t, T

?

• How can ZKP help here?

𝑷𝑲{ 𝒙 : 𝒉 = 𝒈𝒙

∧ 𝑪 = 𝑩𝒙}

Check:
𝑓(𝑡, 𝑥) = 𝑇

Attribute-based
credentials

34

Attribute-based credentials

• Also known as anonymous credentials

• As opposed to tokens, can contain other attributes

• Attributes are encoded as numbers, may represent:
• Membership status (normal user, premium user)

• Name

• Age

• Social security number

• Random identifiers and secret keys

• Application specific identifiers

• ...

Credential

Secret key

Name

Age

Membership number

Membership type

35

Signed by
an issuer

https://pixabay.com/en/photos/seal/?image_type=illustration

Obtaining credentials and showing credentials

Issuer/IdP

User

2. Find attributes

Credential

Secret key

Age

Membership number

Verifier/SP 36

https://pixabay.com/en/photos/seal/?image_type=illustration

Unforgeability: only the issuer should be able to produce valid
credentials.

Selective disclosure: the user can hide irrelevant attributes

Issuer unlinkability: the issuer should not be able to recognize a
credential that it previously issued

Verifier unlinkability: the verifier should not be able to link two
consecutive showings of the same credential

37

Attribute-based credentials: properties

Selective disclosure

User

Credential

Secret key

Age

Membership number
Verifier/SP

a. Request service

b. Request credential

c. Show credential

Credential

Secret key

Age

Membership number

The user can hide irrelevant attributes. But the verifier can still
check the validity of the credential.

38

https://pixabay.com/en/photos/seal/?image_type=illustration
https://pixabay.com/en/photos/seal/?image_type=illustration

39

Construction 1: traditional signatures

Issuer Unlinkability

• The issuer should not be
able to recognize a
credential that it previously
issued

• Modelled using an
indistinguishability game.

• Phase 1: obtain credentials

• Phase 2: challenge phase,
distinguish users

Obtain Credential

Obtain Credential

Phase 1: obtain credentials

Phase 2: challenge phase

Note: both credentials should “look” the same, they
should disclose the same attributes.

or

40

https://pixabay.com/en/photos/seal/?image_type=illustration
https://pixabay.com/en/photos/seal/?image_type=illustration
https://pixabay.com/en/photos/seal/?image_type=illustration
https://pixabay.com/en/photos/seal/?image_type=illustration

Construction 2: blind signatures

• Blind signature: signer signs a
message m without knowing what
it signs. Moreover, it cannot later
recognize this signature.

• Property: exactly as issuer
unlinkability.

• Implemented by: U-Prove by
Microsoft (2000), but also
Anonymous Credentials Light
(2013), and PrivacyPass

812726
712389

A simple physical blind signature scheme

Step 1: write down
serial number

Step 2: place in envelope
with carbon paper

81
27

2
6

71
23

8
9

Step 3: issuer signs
the envelope

Step 4: user recovers
signed statement

812726
712389

41

Verifier (multi-show) Unlinkability

• The verifier should not be
able to recognize a
credential that it previously
saw

• Modelled using an
indistinguishability game.

• Phase 1: see credentials for
different users

• Phase 2: challenge phase,
distinguish users

Show Credential

Show Credential

Phase 1: see credentials

Phase 2: challenge phase

Note: both credentials should “look” the same, they
should disclose the same attributes (key and value).

or

42

https://pixabay.com/en/photos/seal/?image_type=illustration
https://pixabay.com/en/photos/seal/?image_type=illustration
https://pixabay.com/en/photos/seal/?image_type=illustration
https://pixabay.com/en/photos/seal/?image_type=illustration
https://pixabay.com/en/photos/seal/?image_type=illustration
https://pixabay.com/en/photos/seal/?image_type=illustration

Construction 3: proving having signature

1. Commit to user-defined attributes
2. Find other
attributes3. Return signature σ on attributes

Issuing a credential
Not always a blind

signature

User

Credential

Secret key

Age

Membership number

Verifier/SP

Showing a credential

User proves: “I have a valid
signature σ on some attributes”

43

https://pixabay.com/en/photos/seal/?image_type=illustration

44

Deep Dive: Pointcheval-Sanders credential

Credential

a1

a2

…

aL

A solution: Pointcehval-Sanders
Why does it have unforgeability? Selective disclosure? I&V unlinkability?

https://pixabay.com/en/photos/seal/?image_type=illustration

The next 3 slides are full of math, AGAIN

but then we’re done for today

45

Pointcheval-Sanders credential

Pointcheval-Sanders signatures

Key generation

• Pick generator ෤𝑔 ∈𝑅 𝐺2

• Private key: (𝑥, 𝑦1, … , 𝑦𝐿) ∈𝑅ℤ𝑝

• Public key:
(෤𝑔, ෨𝑋, ෩𝑌1, … , ෩𝑌𝐿) = (෤𝑔, ෤𝑔𝑥 , ෤𝑔𝑦1 , … , ෤𝑔𝑦𝐿)

Signing tuple (𝑚1, … , 𝑚𝐿)

• Pick ℎ ∈𝑅 𝐺1
∗ and output

• Signature 𝜎 = ℎ, ℎ𝑥+∑𝑦𝑖𝑚𝑖

Cyclic groups: 𝐺1, 𝐺2, 𝐺𝑇

Generators: 𝑔, ෤𝑔, 𝑔𝑇

Group order: 𝑝

Pairing: 𝑒 ∶ 𝐺1 × 𝐺2 → 𝐺𝑇

Bilinear: 𝑒 𝑔𝑎, ෤𝑔𝑏 = 𝑒 𝑔, ෤𝑔 𝑎𝑏

Verifying a signature:
• Given a signature 𝜎 = (𝜎1, 𝜎2)
• Message: (𝑚1, … , 𝑚𝐿)
• And public key (෤𝑔, ෨𝑋, ෩𝑌1, … , ෩𝑌𝐿)
• Check:

• 𝜎1 ≠ 1𝐺1

• 𝑒 𝜎1, ෨𝑋 ⋅ ∏෩𝑌𝑖
𝑚𝑖 = e(𝜎2, ෤𝑔)

46

Pointcheval-Sanders credential

Details in
handout

Proof shows that C is
correctly formed.

What goes wrong if
you omit this?

Cyclic groups: 𝐺1, 𝐺2, 𝐺𝑇

Generators: 𝑔, ෤𝑔, 𝑔𝑇

Group order: 𝑝

Pairing: 𝑒 ∶ 𝐺1 × 𝐺2 → 𝐺𝑇

Bilinear: 𝑒 𝑔𝑎, ෤𝑔𝑏 = 𝑒 𝑔, ෤𝑔 𝑎𝑏

PS Signatures
Private key:
(𝑥, 𝑦1, … , 𝑦𝐿) ∈𝑅ℤ𝑝

𝑋 = 𝑔𝑥

Public key:
𝑔, 𝑌𝑖 = 𝑔, 𝑔𝑦𝑖 ∈ 𝐺1

෤𝑔, ෨𝑋, ෩𝑌𝑖 = ෤𝑔, ෤𝑔𝑥, ෤𝑔𝑦𝑖 ∈ 𝐺2

Signature: 𝜎 = (𝜎1, 𝜎2) such that

𝜎 = ℎ, ℎ𝑥+∑𝑦𝑖𝑎𝑖 ∈ 𝐺1
2

47

Attribute sets:
U: attributes determined by user
(hidden from issuer)
I: attributes determined by issuer

Issuing a PS credential

• User commits to hidden attributes, pick 𝑡 ∈𝑅 ℤ𝑝:

𝐶 = 𝑔𝑡 ෑ

𝑖∈𝑈

𝑌𝑖
𝑎𝑖

• And proves that she did so correctly:

𝑃𝐾 𝑡, 𝑎𝑖 𝑖∈𝑈 : 𝐶 = 𝑔𝑡 ෑ

𝑖∈𝑈

𝑌𝑖
𝑎𝑖

• Issuer verifies the proof, picks 𝑢 ∈𝑅 ℤ𝑝 and sets:

𝜎′ = 𝑔𝑢 , 𝑋𝐶 ෑ

𝑖∈𝐼

𝑌𝑖
𝑎𝑖

𝑢

• User forms signature 𝜎 = (𝜎1
′,

𝜎2
′

𝜎1
′ 𝑡)

Pointcheval-Sanders credential

Proving possession of a credential

• User has a credential 𝜎 = (𝜎1, 𝜎2) on 𝑎1, … , 𝑎𝐿

• Pick 𝑟, 𝑡 ∈𝑅 ℤ𝑝 and compute 𝜎′ = 𝜎1
𝑟 , (𝜎2𝜎1

𝑡 𝑟)

• Send 𝜎′ and disclosed attributes 𝑎𝑖 𝑖∈𝐷

• And proves that the signature is valid:

𝑃𝐾

𝑡, 𝑎𝑖 𝑖∈𝐻 :
𝑒 𝜎2

′ , ෤𝑔 ∏𝑖∈𝐷 𝑒 𝜎1
′, ෨𝑌𝑗

−𝑎𝑖

𝑒 𝜎1
′, ෨𝑋

=

𝑒 𝜎1
′, ෤𝑔 𝑡 ෑ

𝑖∈𝐻

𝑒 𝜎1
′, ෩𝑌𝑖

𝑎𝑖

• The verifier accepts if proof is valid and 𝜎1
′ ≠ 1

48𝑒 𝜎1
′, ෤𝑔𝑡 ෨𝑋 ⋅ ∏෩𝑌𝑖

𝑎𝑖 = e(𝜎2
′ , ෤𝑔)

Attribute sets:
H: hidden attributes
D: disclosed attributes
Different from previous slide!!!

What goes wrong if you omit this?

Pointcheval-Sanders credential
Cyclic groups: 𝐺1, 𝐺2, 𝐺𝑇

Generators: 𝑔, ෤𝑔, 𝑔𝑇

Group order: 𝑝

Pairing: 𝑒 ∶ 𝐺1 × 𝐺2 → 𝐺𝑇

Bilinear: 𝑒 𝑔𝑎, ෤𝑔𝑏 = 𝑒 𝑔, ෤𝑔 𝑎𝑏

PS Signatures
Private key:
(𝑥, 𝑦1, … , 𝑦𝐿) ∈𝑅ℤ𝑝

𝑋 = 𝑔𝑥

Public key:
𝑔, 𝑌𝑖 = 𝑔, 𝑔𝑦𝑖 ∈ 𝐺1

෤𝑔, ෨𝑋, ෩𝑌𝑖 = ෤𝑔, ෤𝑔𝑥, ෤𝑔𝑦𝑖 ∈ 𝐺2

Signature: 𝜎 = (𝜎1, 𝜎2) such that

𝜎 = ℎ, ℎ𝑥+∑𝑦𝑖𝑎𝑖 ∈ 𝐺1
2

• Unforgeability: yes, from the PS signatures

• Selective disclosure: yes, use proof of knowledge to prove that the
signature is valid without revealing all the attributes

• Issuer & verifier unlinkability: yes. Informally, the randomization and
the proof of knowledge hide the signature. Therefore, neither the
issuer (signer) nor the verifier can recognize it.

49

Pointcheval-Sanders credential

Properties

ABCs in the wild

• Algebraic MACs (2014): assumes issuer and
verifier are same, but has multi-show
unlinkability, does not require pairings

• Anonymous Credentials Light (2013): uses the
blind-signature paradigm, only single show,
does not require pairings

• IRMA (Irma.app) implements Idemix on a
smart phone app + provides support for
Identity Providers and Service Providers

50

Other credential schemes

• U-Prove by Stefan Brands/Microsoft around 2000; single show
• Based on the blind signing paradigm

• Standard discrete-logarithm based setting, no pairings

• To get unlinkability: use a credential only once, no verifier unlinkability

• Identity Mixer (Idemix) by Jan Camenisch and Anna Lysyanskaya/IBM
research around 2002; multi-show
• Based on signature scheme + proof of knowledge of signature

• Setting 1: strong RSA assumption, large key sizes required

• Setting 2: elliptic curve/pairing based setting

• Supports a large number of extensions, including range proofs, key escrow,
domain specific pseudonyms

51

Example: Today’s Live Exercises

52

Revoking/blocking a credential

• The revoke/block a credential means to invalidate it

• Reasons:
• User detects credentials are stolen

• Issuer decides to withdraw statements

• Credentials are being abused

• Questions to ask:
• Who can initiate revocation/blocking? What information is needed?

• Can users detect that they have been revoked/blocked? (Or can the
revocation test be made in silence?)

• Does the system provide backward unlinkability after revocation?

53

Blocklistable anonymous credentials

• What if we do not know the user’s identity?

• -> block misbehaving anonymous users without needing to identify
them

What SP sees

User

Bad
transaction

User
blocked

54

Blocklistable anonymous credentials, idea

• For every transaction, user produces a token

• Tokens belong to users, but SP cannot determine which user

• Users use a credential to prove that the token is correctly formed

Token for SP

User

55

Blocklistable anonymous credentials, idea II

Service Provider

Blocklist

• Token is correct given credential
• None of the tokens on the blocklist

are mine

𝜋
𝜋

56

Constructing tokens and proofs

• Every user has a credential 𝜎, on secret 𝑠

• Tokens: ℎ, 𝑡 = ℎ𝑠 where ℎ a random element

• Blocklist: 𝐵𝐿 = { ℎ1, 𝑡1 , … , (ℎ𝑛, 𝑡𝑛)}

• Construct the proof:

𝑃𝐾 𝜎 :

σ over 𝑠 ∧
𝑡 = ℎ𝑠 ∧

ሥ

𝑖=1

𝑛

𝑡𝑖 ≠ ℎ𝑖
𝑠

Have credential

Token correct

Blocklisted
tokens

not mine

57

Insert: big
equation from

before

User driven revocation

• Tokens: ℎ, 𝑡 = ℎ𝑠 where ℎ a random element (again, prove
correctness of this tuple w.r.t. user’s credential)

• To revoke a credential, user makes s public

• Now verifiers can check a token ℎ, 𝑡 against all revoked 𝑠1, … , 𝑠𝑛

Challenges:

• Check is linear in size of the revocation list (for verifier, constant time
for user)

• Backward linking is possible, once secret s is known

58

Issuer driven revocation

• Issuer adds random attribute a0

• User constructs token: ℎ, 𝑡 = ℎ𝑎0 where ℎ a random element
(again, prove correctness of this tuple w.r.t. user’s credential)

• Now issuer can reveal a0 to revoke a credential

Challenges:

• Know who you want to block

• Issuer can trace users without their knowledge

• Does not give backward unlinkability

Alternative: use
accumulators to hold
a blocklist. Does not

suffer from backward
linkability.

59

Limiting the number of uses

n-times anonymous credentials can be used for at most n times.
Thereafter, verifiers can recognize reuse.

How?

• Before: in blocklistable anonymous credentials, users can make
unlimited number of tokens

• Idea: limit the number of tokens a user can create

60

Goals
What should you learn today?

61

▪ Understand when to use privacy-preserving authorization

▪ Basic understanding of zero-knowledge proofs
• Key properties
• Schnorr example

▪ Understand what are attribute-based credentials:
• Trust assumptions & key properties
• How to choose attributes sets
• Pointcheval-Sanders example

▪ Understand basic methods to implement attribute-based credentials
• More in the "Secret Stroll" project!

▪ Understand practical issues when using anonymous authentication

References

• Nigel Smart. Cryptography: An Introduction. 3rd edition online. Also available in
print. Chapters 11 and 25.

• https://privacypass.github.io/protocol/
• David Pointcheval, Olivier Sanders. “Short Randomizable Signatures”. In CT-RSA

2016.

• Patrick P. Tsang, Man Ho Au, Apu Kapadia, Sean W. Smith. “BLAC: Revoking
Repeatedly Misbehaving Anonymous Users without Relying on TTPs”. ACM Trans.
Inf. Syst. Secur. 13(4) 2010.

• Jan Camenisch, Susan Hohenberger, Markulf Kohlweiss, Anna Lysyanskaya, and
Mira Meyerovich. “How to win the clonewars: efficient periodic n-times
anonymous authentication”. In: CCS 2006.

• Jan Camenisch, Markulf Kohlweiss, and Claudio Soriente. “An Accumulator Based
on Bilinear Maps and Efficient Revocation for Anonymous Credentials”. In: PKC
2009.

62

https://privacypass.github.io/protocol/

	Slide 1
	Slide 2: Introduction Privacy-Preserving Authorization
	Slide 3: Goals What should you learn today?
	Slide 4: Introduction
	Slide 5
	Slide 6
	Slide 7: Authentication vs. authorization
	Slide 8: Privacy-Preserving authorization
	Slide 9: Zero-Knowledge Proofs
	Slide 10
	Slide 11: Zero-knowledge proofs: properties
	Slide 12: Deep Dive: Example 2 (PKI)
	Slide 13: Schnorr’s proof of identification
	Slide 14: Schnorr’s proof of identification
	Slide 15: Schnorr’s proof of identification (no c)
	Slide 16: Schnorr’s proof of identification (1-bit)
	Slide 17: Schnorr’s proof of identification (1-bit)
	Slide 18: Schnorr’s proof of identification (n-bits)
	Slide 19: Schnorr’s proof of identification
	Slide 22: Non-interactive proofs: Fiat--Shamir heuristic
	Slide 23: Schnorr’s proof of identification
	Slide 24: Schnorr’s proof of identification
	Slide 25: Schnorr’s signature
	Slide 26
	Slide 27: Zero-knowledge proofs in the wild
	Slide 28: Example: privacy pass
	Slide 29: Example: privacy pass
	Slide 30: Property: unlinkability
	Slide 31: Implementing privacy pass
	Slide 32: Implementing privacy pass
	Slide 33: Implementing privacy pass
	Slide 34: Attribute-based credentials
	Slide 35: Attribute-based credentials
	Slide 36: Obtaining credentials and showing credentials
	Slide 37: Attribute-based credentials: properties
	Slide 38: Selective disclosure
	Slide 39
	Slide 40: Issuer Unlinkability
	Slide 41: Construction 2: blind signatures
	Slide 42: Verifier (multi-show) Unlinkability
	Slide 43: Construction 3: proving having signature
	Slide 44
	Slide 45: The next 3 slides are full of math, AGAIN 😔 but then we’re done for today 🙂
	Slide 46: Pointcheval-Sanders signatures
	Slide 47: Issuing a PS credential
	Slide 48: Proving possession of a credential
	Slide 49: Pointcheval-Sanders credential
	Slide 50: ABCs in the wild
	Slide 51: Other credential schemes
	Slide 52: Example: Today’s Live Exercises
	Slide 53: Revoking/blocking a credential
	Slide 54: Blocklistable anonymous credentials
	Slide 55: Blocklistable anonymous credentials, idea
	Slide 56: Blocklistable anonymous credentials, idea II
	Slide 57: Constructing tokens and proofs
	Slide 58: User driven revocation
	Slide 59: Issuer driven revocation
	Slide 60: Limiting the number of uses
	Slide 61: Goals What should you learn today?
	Slide 62: References

