=PrL
CS-523 Advanced topics on
Privacy Enhancing Technologies

Privacy-Preserving Authorization

Mathilde Raynal
SPRING Lab
mathilde.raynal@epfl.ch

Slides credit: Carmela Troncoso, Wouter Lueks

RRR

Introduction
Privacy-Preserving Authorization

Course aim: learn toolbox for privacy engineering

Application Layer

tool cryptographic
for building PETS primitive

Goals

= Understand privacy-preserving authorization

= Basic understanding of
 Key properties
* Schnorr example

= Understand what are
 Trust assumptions & key properties
- How to choose attributes sets
 Pointcheval-Sanders example

= Understand basic methods to implement
* More in the "Secret Stroll" project!

= Understand when using anonymous authentication

Introduction

| can prove | am Mathilde

N

Content Mathilde is
allowed to see

v

We know Mathilde
and we know what

she can access

| can prove | am Mathilde

N

Content Mathilde is
allowed to see

v

Identity is not relevant!

Just that | am subscribed to certain content!

We know Mathilde
and we know what

she can access

Authentication vs. authorization

Authentication Authorization
* Username and password * Check that this user is a real person
e Biometrics and not a bot (Cloudflare)

e Client certificates * is an honest editor (Wikipedia)

* paid for this service (video streaming,

* Challenge response with public _
music, games, etc.)

key cryptography (ssh)
* is old enough to access this service

All of these identify the user. Is this ° 1S allowed to vote
always necessary?

None of these require identification.
How do we build these?

= A cryptographic primitive that enables

| can prove “l am allowed users to prove possession of an attribute

to use the service”

2

- : the proving party
cannot lie, and the verifying party cannot
be convinced if not true

: : the verifying party
cannot learn anything, other than the
veracity of the statement proven (and
what one infers from the statement itself)

| am convinced! And |
have learned nothing else ™=

= Privacy-preserving authorization builds on

/ero-Knowledge
Proofs

/ero-knowledge proofs

A prover can use a zero-knowledge proof to prove that a statement is true,
without revealing information beyond the fact that the statement is true.

Example 1 (In voting protocols) Example 2 (PKI)

Prover: Voter Prover: pk holder

Statement: This ciphertext ¢ contains an Statement: They know the private key sk
encryption of O or 1. corresponding to this public key pk.

Without revealing: the vote Without revealing: the private key sk

10

/ero-knowledge proofs: properties H

A prover can use a zero-knowledge proof to prove that a is true,

Completeness: If the statement is true, an honest prover can convince an
honest verifier that the statement is true.

Soundness: If the statement is false, a cheating prover cannot convince an
honest verifier with high probability (i.e., close to 1).

Zero-knowledge: If the statement is true, no verifier learns anything
s true.

Deep Dive: Example 2 (PKI)

Prover: pk holder
Statement: They know the private key sk corresponding to this public key pk.

Without revealing: the private key sk

A solution: Schnorr’s proof of identification !
Why does it have completeness? Soundness? ZK?

Schnorr’s proof of identification

Peggy wants to prove to Victor that she knows the
private key x corresponding to the public key h = g*
without revealing x.

Cyclic group: G
Generator: g

Group order: p (prime)
X € Zy

Discrete logarithm problem:
Given g, h find x st. h = g*

Victor

Cyclic group: G

Schnorr’s proof of identification Generator: g

Group order: p (prime)
X € Zp

Peggy wants to prove to Victor that she knows the
private key x corresponding to the public key h = g*

. . Discrete logarithm problem:
without revealing x. S

Given g, h find x st. h = g*

Common information:

* Group: (G, g,p)
* Publickey: h = g*

Victor

14

Schnorr’s proof of identification (no c)

Peggy wants to prove to Victor that she knows the
private key x corresponding to the public key h = g*

without revealing x.

Pickr €p Zy

Common information:

* Group: (G, g,p)
* Publickey: h = g*

No:R=g°/h
always verifies

R=g

s=r+x modp Victor

»
»

Rh =7g°

Cyclic group: G
Generator: g

Group order: p (prime)
X € Zp

Discrete logarithm problem:
Given g, h find x st. h = g*

Completeness: If Peggy is
honest, she can convince
Victor (honest verifier) that
the statement is true.

Soundness: If Peggy is not
honest, she cannot convince
Victor (honest verifier) with
high probability.

Zero-knowledge: Victor
cannot learn anything
about .

15

Cyclic group: G

Schnorr’s proof of identification (1-bit) fei

Group order: p (prime)
X € Zp

Peggy wants to prove to Victor that she knows the
private key x corresponding to the public key h = g*

. . Discrete logarithm problem:
without revealing x. S

Given g, h find x st. h = g*

Common information:

* Group: (G, g,p)
* Publickey: h = g*

Pickr €p Zy r

R=g

»
»

Pick c € {0,1}
C

s=1r+cx modp Victor

»
»

Rh¢ =7g°

16

Schnorr’s proof of identification (1-bit)

Peggy wants to prove to Victor that she knows the
private key x corresponding to the public key h = g*

without revealing x.

Can guess c and

Common information:

A

use trick or
* Group: (G, g,p) nothing: 0.5
* Publickey: h = g* &: %
Pickr €p Zy R=g"
Pick c € {0,1}
c

s=1r+cx modp . Victor

Rh¢ =7g°

Cyclic group: G
Generator: g

Group order: p (prime)
X € Zp

Discrete logarithm problem:
Given g, h find x st. h = g*

Completeness: If Peggy is
honest, she can convince
Victor (honest verifier) that
the statement is true.

Soundness: If Peggy is not
honest, she cannot convince
Victor (honest verifier) with
high probability.

Zero-knowledge: Victor
cannot learn anything

about .

17

Cyclic group: G

Schnorr’s proof of identification (n-bits) 2

Group order: p (prime)
X € Zp

Peggy wants to prove to Victor that she knows the
private key x corresponding to the public key h = g*

. . Discrete logarithm problem:
without revealing x. S

Given g, h find x st. h = g*

Completeness: If Peggy is

Common information: . th 1/ Cpr;est(,hshe o CQPV")“':(?] .
) _ uess with 1/p ictor (honest verifier) tha
Group: (G, g, p) the statement is true.

* Publickey: h = g* .
Soundness: If Peggy is not
honest, she cannot convince

Pickr €5 Z - Victor (honest verifier) with
p R=yg high probability.
. Zero-knowledge: Victor
Challenge c Pick c € Zy czgnnc;t learn anything
< about .

»
»

s=r+cx modp
Useful for

Rh€ =2g° project

Schnorr’s proof of identification

Peggy wants to prove to Victor that she knows the
private key x corresponding to the public key h = g*
without revealing x.

Short Notation:
PK{(x): h = g*}

Proving knowledge of a Pedersen’s
commitment:

PK{(x,7):C = g¥g5 }

Victor

Cyclic group: G
Generator: g

Group order: p (prime)
X € Zp

Discrete logarithm problem:
Given g, h find x st. h = g*

Completeness: If Peggy is
honest, she can convince
Victor (honest verifier) that
the statement is true.

Soundness: If Peggy is not
honest, she cannot convince
Victor (honest verifier) with
high probability.

Zero-knowledge: Victor
cannot learn anything
about .

19

Non-interactive proofs: Fiat--Shamir heuristic

* Interaction is costly, requires communication rounds with verifier. Verifier
needs to be online.

Fiat-Shamir heuristic:

e Turns interactive commitment-challenge-response protocols (called sigma-
protocols) into non-interactive protocols

* Replace challenge ¢ with cryptographic hash of:
* All public values
and
e All commitments of the first step

Cyclic group: G

Schnorr’s proof of identification Generator: g

Group order: p (prime)
X € Zp

Peggy wants to prove to Victor that she knows the
private key x corresponding to the public key h = g*

. . Discrete logarithm problem:
without revealing x. S

Given g, h find x st. h = g*

Common information:

* Group: (G, g,p)
* Publickey: h = g*

Pickr €p Zy
R=g"

c=H(gIlhIR)

R,c,s =7+ cx modp Victor

»
»

Rh¢ =7g°

23

Cyclic group: G

Schnorr’s proof of identification Generator: g

Group order: p (prime)
X € Zp

Peggy wants to prove to Victor that she knows the
private key x corresponding to the public key h = g*

. . Discrete logarithm problem:
without revealing x. S

Given g, h find x st. h = g*

Common information:

* Group: (G, g,p)
* Publickey: h = g*

Pickr €p Zy
R=g"

c=H(gIlhIR)

R,c,s=r+cx modp Victor R’ = gSh™¢

c=H(glIhIR)
RhE=2g> c=?c

24

Cyclic group: G

Schnorr’s signature Generator: g

Group order: p (prime)
X € Zp

Peggy with public key h wants to sign m.

Discrete logarithm problem:
Given g, h find x st. h = g*

Common information:

* Group: (G, g,p)
* Publickey: h =g~
* Messagem

Pickr €p Zy
R=g"

c=H(gllhllRI m)

N Victor R’ =g°h™¢
¢ =H(gllhIR I m)
c=7c

25

Proof of Knowledge - Extractor

Proof of knowledge: There exists an extractor that, given a successful
prover, can extract the witness (value of which knowledge is being proved).

Run 1 The extractor act§ as the Run 2
verifier, and can rewind prover

(this can never happen to a

. normal prover
Commitment R=g" prover)

Challenge

rewind s'"=r+c'x

a

Response S=Er+cx

Verify:
Rh¢ = g°

Verify:
Rh¢ = g°

pe—¢' = gs —s'
thus
h = g(s =s")/(c —=c")

thus

26

/ero-knowledge proofs in the wild

Critical building block in many cryptographic and privacy-enhancing
technologies.

e Zcash digital currency (but uses a different type of proofs)
e Other types of electronic cash based on tokens

* Electronic voting systems

 Private (smart) metering

* Privacy friendly reputation system

Example: privacy pass

When browsing websites
using Tor, users frequently
have to solve CAPTCHAs.

Why?

One more step

Please complete the security check to access cloudflare.com

Select all images with street Fa
signs.

Submit

28

Example: privacy pass

* Goal: automatically allow real users (humans) from bots,
implemented by Cloudflare and Tor browser.

Step 1: Obtain tokens Step 2: Spend tokens instead of solving CAPTCHA

Website?

»

Solve a CAPTCHA

A
v

Token or CAPTCHA?

A

Obtain Tokens

A
\

\

Tor Tor

 What do we do not want?
Cloudflare learning pairs: (“I am human Mathilde”, website | visit)

Property: unlinkability

 Cloudflare (the adversary) should not be able to link tokens by the same user.

* Modelled using an indistinguishability game which captures something
stronger: can Cloudflare distinguish between two users?

Phase 1: obtain/spend tokens

Obtain Tokens
— Phase 2: challenge phase

Spend Token

4 —>

Obtain Tokens

—>

Spend Token

4 ————>

Cryptography sidebar

Implementing privacy pass Cyclic group: G

Generator: g

Group order: p (prime)

Obtaining a token ,
Private key: x

. L x Discrete logarithm problem:
Pick t € {0,1}128 Publickey: h = g

Given g, h find x st. h = g*

Server has: private key x
Client has: value t
Client learns: T = f(t, x) (but not x)
Server learns: nothing OPRF
Protocol

Hash function: H:{0,1}* > G

Showing a token

(..] t, T
) .

Check:
fx)=T

31

Cryptography sidebar

Implementing privacy pass Cyclic group: G

Generator: g

Group order: p (prime)
Obtaining a token

Private key: x 5 | - L
Public key: h = g* iscrete logarithm problem:

Pick t €g {0,1}1%° Given g, h find x st. h = g*

Server has: private key x
Client has: value t

Hash function: H:{0,1}* > G

8-

Client learns: T = H(t)* (but not x)
Server learns: nothing
{ t’T]

Showing a token

&

Check:
fx)=T

32

Cryptography sidebar

Implementing privacy pass Cyclic group: G

Generator: g
Group order: p (prime)

Obtaining a token

Private key: x 5 | - L
Public key: h = g* iscrete logarithm problem:

Pick ¢ €, {0,117 Given g, h find x st. h = g*

Pleb ER Zp
b
B = H(t) _ .
> éﬂ Hash function: H:{0,1}* - G
C =B* PK{(x):h=g*

T = Cb_1 NC = Bx}

N = H(®*
-

J

Showing a token

Check:
or @ ? f(t,x)=T
* How can ZKP help here? 33

Attribute-based
credentials

Attribute-based credentials

* Also known as anonymous credentials

* As opposed to tokens, can contain other attributes

* Attributes are encoded as numbers, may represent:
* Membership status (normal user, premium user) Nzcr;ee -
* Name Age
* Age Membership number
 Social security number Membership type
 Random identifiers and secret keys ’

* Application specific identifiers

Signed by
an issuer

https://pixabay.com/en/photos/seal/?image_type=illustration

Obtaining credentials and showing credentials

2. Find attributes

Credential

Secret key
Age

Membership numbe
, Verifier/SP 36

https://pixabay.com/en/photos/seal/?image_type=illustration

Attribute-based credentials: properties

Unforgeability: only the issuer should be able to produce valid
credentials.

Selective disclosure: the user can hide irrelevant attributes

Issuer unlinkability: the issuer should not be able to recognize a
credential that it previously issued

Verifier unlinkability: the verifier should not be able to link two
consecutive showings of the same credential

Selective disclosure

The user can hide irrelevant attributes. But the verifier can still
check the validity of the credential.

a. Request service

v

Credential

Secret key) b. Request credential
Age c. Show credential .
Membership number User

Credential Verifier/SP

https://pixabay.com/en/photos/seal/?image_type=illustration
https://pixabay.com/en/photos/seal/?image_type=illustration

Construction 1: traditional signatures

Issuer Unlinkability

Phase 1: obtain credentials

. Obtain Credential
* The issuer should not be

able to recognize a

credential that it previously
issued

4
v

Obtain Credential

4
v

* Modelled usingan
indistinguishability game.

Phase 2: challenge phase
e Phase 1: obtain credentials

* Phase 2: challenge phase, @ j—' % or @j’%

distinguish users

Note: both credentials should “look” the same, they
should disclose the same attributes.

40

https://pixabay.com/en/photos/seal/?image_type=illustration
https://pixabay.com/en/photos/seal/?image_type=illustration
https://pixabay.com/en/photos/seal/?image_type=illustration
https://pixabay.com/en/photos/seal/?image_type=illustration

Construction 2: blind signatures

* Blind signature: signer signs a
message m without knowing what
it signs. Moreover, it cannot later
recognize this signature.

* Property: exactly as issuer
unlinkability.

* Implemented by: U-Prove by
Microsoft (2000), but also
Anonymous Credentials Light
(2013), and PrivacyPass

A simple physical blind signature scheme

Step 1: write down
serial number

812726
712389

Step 3: issuer signs
the envelope

o?

Step 2: place in envelope
with carbon paper

.

=

812726
12389

Step 4: user recovers
signed statement

812726

nj;g

Verifier (multi-show) Unlinkability

Phase 1: see credentials

sh c dential
 The verifier should not be m @ e, %

able to recognize a

credential that it previously @ Show Credential %
saw ‘ i '

* Modelled usingan
indistinguishability game.

Phase 2: challenge phase
* Phase 1: see credentials for

different users @ j. % or @_i,%

* Phase 2: challenge phase,

distinguish users Note: both credentials should “look” the same, they
should disclose the same attributes (key and value).

42

https://pixabay.com/en/photos/seal/?image_type=illustration
https://pixabay.com/en/photos/seal/?image_type=illustration
https://pixabay.com/en/photos/seal/?image_type=illustration
https://pixabay.com/en/photos/seal/?image_type=illustration
https://pixabay.com/en/photos/seal/?image_type=illustration
https://pixabay.com/en/photos/seal/?image_type=illustration

Construction 3: proving having signature

Not always a blind

Issuing a credential signature

1. Commit to user-defined attributes

2. Find other

3. Return signature o on attributes attributes

Credential

Showing a credential
Secret key &

Age
5 User proves: “l have a valid

Membership number I) signature o on some attributes”

User

v

Verifier/SP

43

https://pixabay.com/en/photos/seal/?image_type=illustration

Deep Dive: Pointcheval-Sanders credential

Credential

a;

a,

A solution: Pointcehval-Sanders
Why does it have unforgeability? Selective disclosure? I&V unlinkability?

44

https://pixabay.com/en/photos/seal/?image_type=illustration

Pointcheval-Sanders credential

The next 3 slides are full of math, AGAIN @

but then we’re done for today @

Pointcheval-Sanders credential

Pointcheval-Sanders signatures

Key generation
* Pick generator g €p

G Cyclicgroup. =~ Details in
Generators. _ handout

° I . Group orde..
Private key: (x, ¥y, ..., - ifying a signature:

* Public key: Pairing: e : G; X G, = G Given a si _
~ xr \r > ilinear: a - ~\a gnature 0 = (0-1’ 0-2)
(G X1, ., 1) = (GOSN essage: (m,, ... m))
* And publickey (§,X,Y:, ..., V1)
Signing tuple (mg, ..., m;) * Check:

* Pick h € Gi‘ and output * 01 F 161
* Sighature o = (h, hx+2yimi) * 9(01:)’Z ' HYimi) = e(02,9)

Attribute sets:
U: attributes determined by user

(hidden from issuer)

POi ntc h eva |—Sa n d e rS C red e nti a | I: attributes determined by issuer

Cyclic groups: G1, G,, Gt

Issuing a PS credential comectly formed. | SoTEIRO: 0.1

Proof shows that Cis

What goes wrong if

* User commits to hidden attributes, pick t € you omit this? Pairing: e : G; X G, — G

C=g" 1_[Yiai Bilinear: e(g%, §%) = e(g, §)*
IeEU
* And proves that she did so correctly: PS Signatures
. Private key:
PKA(t, (aDie): € = g° | [1" Y10 0) Exy
iU X=g"
* Issuer verifies the proof, picks u € Z, and sets: ARG LEE
. (9.Y) =(9,9°) € Gy
, o, (9.%5.%) =(5.6%,37) € G,
o =|g4“ | XC 1_[Y
iel Signature: 0 = (04, 0;) such that
o= (h’ hx+ZYiai) = 012
!/
* User forms signature o = (a’,% 47

0,

Attribute sets:
H: hidden attributes
D: disclosed attributes

POi ntc h eva |—Sa n d e rS C red e nti a | Different from previous slide!!!

Cyclic groups: G1, G,, Gt

Proving possession of a credential Generators: g, J, gr

Group order: p

 User has a credential 0 = (04,0,) on (aq, ...,a;) Pairing: e : Gy X G, — Gr
* Pickr,t € Z,, and compute ¢’ = (o7, (0,07)") Bilinear: e(g%, g°) = e(g,)
» Send ¢’ and disclosed attributes (a;);ep PS Signatures
 And proves that the signature is valid: AR L
(X, Y1, -, Y1) ERZy
o ~\—aj X = gx
((t (a-)-) 8(0'2', g) HiED 8(0'1’; Y]) _\ Public key:
(Qilien): e(ol, X) (9.Y) =(g,9”) € G4

PK « ’ (§.X.7) = (4,5% §7) € G,

I~ 1 5\ 4i
e(oy,)" 1_[3(01» Yi)
\ i€H
The verifier accepts if proof is valid and o; # 1

What goes wrong if you omit this?

J Signature: 0 = (04, 0;) such that
o= (h’ hx+ZJ’iai) = G12

Pointcheval-Sanders credential

Properties

* Unforgeability: yes, from the PS signatures

* Selective disclosure: yes, use proof of knowledge to prove that the
signature is valid without revealing all the attributes

* Issuer & verifier unlinkability: yes. Informally, the randomization and
the proof of knowledge hide the signature. Therefore, neither the

issuer (signer) nor the verifier can recognize it.

ABCs in the wild

* Algebraic MACs (2014): assumes issuer and
verifier are same, but has multi-show
unlinkability, does not require pairings

 Anonymous Credentials Light (2013): uses the
blind-signature paradigm, only single show,
does not require pairings

* IRMA (Irma.app) implements Idemix on a
smart phone app + provides support for
ldentity Providers and Service Providers

50

Other credential schemes

* U-Prove by Stefan Brands/Microsoft around 2000; single show
* Based on the blind signing paradigm

e Standard discrete-logarithm based setting, no pairings
* To get unlinkability: use a credential only once, no verifier unlinkability

* [dentity Mixer (Idemix) by Jan Camenisch and Anna Lysyanskaya/IBM
research around 2002; multi-show
* Based on signature scheme + proof of knowledge of signature
e Setting 1: strong RSA assumption, large key sizes required
 Setting 2: elliptic curve/pairing based setting

* Supports a large number of extensions, including range proofs, key escrow,
domain specific pseudonyms

Example: Today’s Live Exercises

Revoking/blocking a credential

* The revoke/block a credential means to invalidate it

* Reasons:

e User detects credentials are stolen
e |ssuer decides to withdraw statements
* Credentials are being abused

e Questions to ask:

* Who can initiate revocation/blocking? What information is needed?

* Can users detect that they have been revoked/blocked? (Or can the
revocation test be made in silence?)

e Does the system provide backward unlinkability after revocation?

Blocklistable anonymous credentials

 What if we do not know the user’s identity?

* -> block misbehaving anonymous users without needing to identify
them

User

What SP sees

transaction

Blocklistable anonymous credentials, idea

* For every transaction, user produces a token
* Tokens belong to users, but SP cannot determine which user
e Users use a credential to prove that the token is correctly formed

User

Token for SP

55

Blocklistable anonymous credentials, idea I

Blocklist O

Service Provider

 Token Ois correct given credential
e None of the tokens on the blocklist
are mine 56

Constructing tokens and proofs

* Every user has a credential g, on secret s
e Tokens: (h,t = h®) where h arandom element

* Blocklist: BL = {(h{,t{), ..., (h,, t;)}

e Construct the proof: % }

(oovers A) Have credential
=

PK < .

(0); /n\ lockli
CRIOIN i
\ i=1 J

not mine

57

User driven revocation

* Tokens: (h,t = h%) where h a random element (again, prove
correctness of this tuple w.r.t. user’s credential)

* To revoke a credential, user makes s public
* Now verifiers can check a token (h, t) against all revoked sq, ..., Sy,

Challenges:

* Check is linear in size of the revocation list (for verifier, constant time
for user)

* Backward linking is possible, once secret s is known

Issuer driven revocation

* Issuer adds random attribute a,

* User constructs token: (h,t = h%°) where h a random element
(again, prove correctness of this tuple w.r.t. user’s credential)

* Now issuer can reveal a,to revoke a credential

Challenges:

* Know who you want to block

* Issuer can trace users without their knowledge
* Does not give backward unlinkability

Alternative: use
accumulators to hold

a blocklist. Does not
suffer from backward
linkability.

59

Limiting the number of uses

n-times anonymous credentials can be used for at most n times.
Thereafter, verifiers can recognize reuse.

How?

* Before: in blocklistable anonymous credentials, users can make
unlimited number of tokens

* |dea: limit the number of tokens a user can create

Goals

= Understand privacy-preserving authorization

= Basic understanding of
 Key properties
* Schnorr example

= Understand what are
 Trust assumptions & key properties
- How to choose attributes sets
 Pointcheval-Sanders example

= Understand basic methods to implement
* More in the "Secret Stroll" project!

= Understand when using anonymous authentication

References

 Nigel Smart. Cryptography: An Introduction. 3" edition online. Also available in
print. Chapters 11 and 25.

* https://privacypass.github.io/protocol/

. 5)8\1/|é1| Pointcheval, Olivier Sanders. “Short Randomizable Signatures”. In CT-RSA

* Patrick P. Tsang, Man Ho Au, Apu Kapadia, Sean W. Smith. “BLAC: Revoking
Repeatedly Misbehaving Anonymous Users without Relying on TTPs”. ACM Trans.
Inf. Syst. Secur. 13(4) 2010.

* Jan Camenisch, Susan Hohenberger, Markulf Kohlweiss, Anna Lysyanskaya, and
Mira Meyerovich. “How to win the clonewars: efficient periodic n-times
anonymous authentication”. In: CCS 2006.

* Jan Camenisch, Markulf Kohlweiss, and Claudio Soriente. “An Accumulator Based
cz)(r)\OBgiIinear Maps and Efficient Revocation for Anonymous Credentials”. In: PKC

https://privacypass.github.io/protocol/

	Slide 1
	Slide 2: Introduction Privacy-Preserving Authorization
	Slide 3: Goals What should you learn today?
	Slide 4: Introduction
	Slide 5
	Slide 6
	Slide 7: Authentication vs. authorization
	Slide 8: Privacy-Preserving authorization
	Slide 9: Zero-Knowledge Proofs
	Slide 10
	Slide 11: Zero-knowledge proofs: properties
	Slide 12: Deep Dive: Example 2 (PKI)
	Slide 13: Schnorr’s proof of identification
	Slide 14: Schnorr’s proof of identification
	Slide 15: Schnorr’s proof of identification (no c)
	Slide 16: Schnorr’s proof of identification (1-bit)
	Slide 17: Schnorr’s proof of identification (1-bit)
	Slide 18: Schnorr’s proof of identification (n-bits)
	Slide 19: Schnorr’s proof of identification
	Slide 22: Non-interactive proofs: Fiat--Shamir heuristic
	Slide 23: Schnorr’s proof of identification
	Slide 24: Schnorr’s proof of identification
	Slide 25: Schnorr’s signature
	Slide 26
	Slide 27: Zero-knowledge proofs in the wild
	Slide 28: Example: privacy pass
	Slide 29: Example: privacy pass
	Slide 30: Property: unlinkability
	Slide 31: Implementing privacy pass
	Slide 32: Implementing privacy pass
	Slide 33: Implementing privacy pass
	Slide 34: Attribute-based credentials
	Slide 35: Attribute-based credentials
	Slide 36: Obtaining credentials and showing credentials
	Slide 37: Attribute-based credentials: properties
	Slide 38: Selective disclosure
	Slide 39
	Slide 40: Issuer Unlinkability
	Slide 41: Construction 2: blind signatures
	Slide 42: Verifier (multi-show) Unlinkability
	Slide 43: Construction 3: proving having signature
	Slide 44
	Slide 45: The next 3 slides are full of math, AGAIN 😔 but then we’re done for today 🙂
	Slide 46: Pointcheval-Sanders signatures
	Slide 47: Issuing a PS credential
	Slide 48: Proving possession of a credential
	Slide 49: Pointcheval-Sanders credential
	Slide 50: ABCs in the wild
	Slide 51: Other credential schemes
	Slide 52: Example: Today’s Live Exercises
	Slide 53: Revoking/blocking a credential
	Slide 54: Blocklistable anonymous credentials
	Slide 55: Blocklistable anonymous credentials, idea
	Slide 56: Blocklistable anonymous credentials, idea II
	Slide 57: Constructing tokens and proofs
	Slide 58: User driven revocation
	Slide 59: Issuer driven revocation
	Slide 60: Limiting the number of uses
	Slide 61: Goals What should you learn today?
	Slide 62: References

